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Abstract

Assessing the economic impacts of artificial intelligence requires integrating insights
from both computer science and economics. We present the Growth and AI Transition
Endogenous model (GATE), a dynamic integrated assessment model that simulates the
economic effects of AI automation. GATE combines three key ingredients that have not
been brought together in previous work: (1) a compute-based model of AI development,
(2) an AI automation framework, and (3) a semi-endogenous growth model featuring en-
dogenous investment and adjustment costs. The integrated assessment model allows users
to simulate the economic effects of the transition to advanced AI in a wide range of po-
tential scenarios. GATE captures the intricate interactions between economic variables
(investment, automation, innovation, and growth) and AI-related inputs and outputs (such
as compute and algorithms). This paper explains the model’s structure and functional-
ity, with particular emphasis on elucidating the technological aspects of AI development
for economists and clarifying economic concepts for the AI community. The model is im-
plemented in an interactive sandbox, allowing users to explore the impact of advanced AI
under different combinations of parameters and policy interventions. The modeling sandbox
is available at www.epoch.ai/GATE.

Keywords: artificial intelligence, integrated assessment models

∗See Section A for a detailed list of contributions.
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1 Introduction

Assessing the transformative potential of artificial intelligence requires integrating insights
from both computer science and economics. We introduce the Growth and AI Transition
Endogenous model (GATE), an integrated assessment tool that captures how AI-driven
advances—in compute, algorithms, and automation—shape macroeconomic outcomes.
Embedded in an interactive simulation platform available at www.epoch.ai/GATE, GATE
enables researchers and policymakers to explore different development paths for AI capa-
bilities and the economy within a unified, dynamic framework.

GATE simulates the evolution of key economic variables, including ouput growth, con-
sumption, capital investment patterns, compute allocation (training vs. inference), and
AI automation rates under a wide range of assumptions about AI development, tech-
nology, preferences, and frictions. At its core, GATE features semi-endogenous growth
through hardware and software R&D, which in turn indirectly shapes the accumulation
of computing resources by improving hardware and algorithmic efficiency. In addition,
the model imposes adjustment costs on both compute and non-compute capital, captur-
ing real-world frictions in scaling up production capacity. Through this combination of
R&D-driven efficiency gains and capital-adjustment constraints, GATE links expanding
AI capabilities (and the resulting labor-task automation) to sustained output growth.

Users can modify crucial parameters of the model such as the strength of complementarity
between AI and human inputs, R&D investment returns, capital adjustment frictions,
hardware efficiency limits, and requirements for full automation to explore a wide range of
scenarios of AI development and their economic implications. By providing this integrated
framework, GATE aims to assist policymakers, economists, and AI researchers in scoping
potential trajectories of AI advancement and its impacts on economic growth, investment
patterns, and labor automation.

A key contribution of GATE is an interdisciplinary approach to modeling AI-driven eco-
nomic transformation. For economists, GATE offers a detailed framework for the engi-
neering process driving increases in AI capabilities. In particular, we explain how the
accumulation of compute resources and algorithmic improvements are expected to drive
AI capabilities and provide a simple and tractable mathematical formalization of this
process. We also present and embed in GATE the standard framework of thinking about
the process of AI automation within the AI community. We hope that this will facilitate
transparent communication and debate between the economics and AI communities re-
garding the likely path of future AI automation. The model fully tracks the relationship
between compute, training and inference processes, and the expanding set of tasks AI can
perform as well as the downstream effects of automation for aggregate output, savings
and investment.
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For the AI community, GATE incorporates key economic mechanisms and constraints such
as endogenous responses of investment decisions to AI developments, adjustment costs
affecting the accumulation processes of capital and compute and the role of economic
incentives in driving the optimal allocation of compute, as well as their effects on key
economic outcomes. By bridging the fields of economics and AI capabilities research,
GATE provides a more comprehensive assessment of AI’s likely economic impact than
single-discipline approaches. We believe this integrated approach allows GATE to surpass
siloed analyses by quantifying how AI’s rapid advancements feed back into economic
growth, helping decision-makers anticipate and manage the profound changes likely to
arise from ongoing technological innovation.

GATE consists of three autonomous modules that jointly track the causal chain from
AI development to economic outcomes and the feedback loop from economic growth to
AI investment. The modules are: (1) an AI development module that links investment
in AI capabilities to the stock of effective compute, the key input required for training
and running AI systems; (2) an AI automation module that maps the available stock
of effective computing resources to AI’s capability to automate labor tasks on both the
extensive and the intensive margins;1 and (3) a macroeconomic module linking labor
market automation to macroeconomic outcomes such as aggregate output, consumption
and investment (and hence further AI developments). We solve the model from the
perspective of a benevolent social planner aiming to maximize the net present value of
consumption for a representative agent, subject to a set of technological constraints and
frictions.

GATE also incorporates two optional add-ons that can be activated or deactivated by
users as needed, enhancing its flexibility for various analyses. The first is an uncertainty
add-on for the process of AI automation, which explicitly models investor beliefs about
the mapping between the computational resources dedicated to AI and the capability
of these systems to automate labor tasks, and allows these beliefs to update based on
observed outcomes. By simulating how economic decisions and outcomes evolve as un-
certainty about AI progress is resolved, this add-on provides more realistic projections of
potential economic trajectories under different scenarios of investor expectations about
AI development paths.

The second add-on models the implications of positive externalities generated by AI-
related R&D. To capture the fact that positive externalities are unlikely to be fully cap-
tured in investment decisions, this add-on allows for the modeling of a “myopic” social

1The intensive margin of automation can be thought of as increasing the number of “digital worker”
equivalents available for the delivery of automated tasks. By contrast, the extensive margin of automation
can be thought of as the increase in the share of tasks that are amenable to be performed by AI/ “digital
workers”.
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planner that does not fully account for the broader societal benefits of R&D. Such a so-
cial planner systematically underinvests in AI development relative to the social optimum.
The R&D externalities module enables simulation of economic trajectories by incorporat-
ing user-defined investment wedges that capture this undervaluation of R&D returns,
allowing modeling of scenarios with different degrees of “internalization” of externalities.

While the integrated assessment model includes many of the forces that we believe will be
crucial in shaping the evolution of AI and its impact on the economy, several significant
limitations remain. The AI development module abstracts away from important non-
compute inputs like data availability and quality, and relies on a simplified ’effective
compute’ framework that reduces algorithmic progress to a single dimension and fails to
capture how improvements may vary across different scales of computation.

For the AI automation module, GATE posits a simple and static labor “task space” that
gets gradually automated via a simple automation rule. Both of these assumptions could
be challenged. For instance, the space of tasks could be significantly more complex, tasks
could display complicated patterns of complementarity and substitutability in production,
and new tasks could appear along the automation process. Moreover, the task automation
process could conversely be made more realistic, but at the expense of model simplicity.
Tasks might be heterogeneous along multiple dimensions, such as manual vs. cognitive
tasks or routine vs. non-routine tasks, and thus the current framework does not capture
how these different task characteristics might affect the ease or difficulty of automation.

For the macroeconomic module, GATE currently omits non-AI related TFP growth from
the analysis and so it cannot model the effects of non-AI related R&D on productivity.
Furthermore, it only allows limited flexibility in modeling the complementarity and sub-
stitutability between labor tasks, capital and non-accumulable factors of production. It
also features a relatively simple specification of demand, that omits, among other factors:
consumption-leisure tradeoffs, income effects, preference heterogeneities or rich patterns
of complementarity and substitutability among different commodities.

The current release of GATE is an initial step in modeling AI-driven economic impacts.
We plan to regularly update the model and the associated sandbox, incorporating emerg-
ing research and community feedback. In the future, this framework could potentially
serve as a foundation for exploring diverse AI automation scenarios through related mod-
els. We invite the research community to engage with GATE and collaborate in building
a comprehensive toolkit for understanding the economic impacts of AI.

The rest of the paper is organized as follows. Section 2 offers a high-level overview of the
model and its key components. Sections 3 to 6 then provides a formal, in-depth description
of all the components of GATE. Section 3 outlines the AI development module, that links
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the path of investment in AI inputs with the evolution of the model’s critical AI input,
effective compute. This section is perhaps the most novel and significant contribution of
GATE. Section 4 describes the AI automation module linking allocations of AI resources
to the pattern of automation of labor tasks. Section 5 outlines GATE’s macro module that
links automation to aggregate output and also details the feedback loop from output to
AI automation via AI investment flows. Section 6 describes the optional model add-ons,
namely the R&D externalities add-on and the uncertainty add-on. Section 7 then proceeds
to describe the model’s functionality and some of its use cases, while Section 8 discusses
current limitations of the model and suggests directions for future work. Finally, Section 9
outlines our future directions for researching the economic implications of advanced AI
systems. Technical details, including plausible ranges for parameter values, justifications
for our parameter presets and a full characterization of our model solution algorithm are
provided in the Appendices.

2 The Model at a High Level

GATE represents an early attempt at constructing an integrated assessment model of
the impact of AI on the global economy. The model is designed for the purpose of
allowing users to run simulations of the economic implications of AI development under
different scenarios and is embedded in an interactive simulation platform available at
www.epoch.ai/GATE.

AI Development Module

Converts investment into 
effective compute through:

 Hardware productio
 Hardware and software R&D 

advances

Optional: R&D externalities

Effective 
FLOP

AI Automation Module

Transforms effective compute 
into automation via:

 Training: Expands 
automatable task rang

 Inference: Sets digital worker 
capacity per task

Optional: AI uncertainty

Automation

Macro Module

Combines automation with 
traditional inputs to:

 Produce aggregate output 
using AI labor, human labor, 
and capita

 Allocate resources between 
consumption and further 
investment

Investment

Figure 1: A high-level schematic of GATE’s three modules and their feedback loops.
The AI Development Module (left) channels investment into effective compute. The AI
Automation Module (middle) applies that compute to automate tasks. The Macro Module
(right) uses both AI and human labor plus capital to produce output, part of which is
reinvested into AI. The dashed boxes highlight optional add-ons—R&D externalities and
AI uncertainty—toggled on or off as needed.

The model follows the entire causal chain linking developments in AI to key economic
outcomes, as well as the feedback loops from economic expansion to increased investment
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in AI development and hence increased AI capabilities. The basic set-up of the model
features an economy that invests resources in order to optimize net present consumption.
Crucially, this is done by investing in AI along two key dimensions: in compute-related
capital to power AI training and deployment (e.g., chips, fabs, datacenters) and in soft-
ware and hardware R&D. Furthermore, increases in AI capabilities brought about by AI
investment permit the gradual automation of labor tasks on both the intensive and ex-
tensive margins, which is then reflected in economic expansion. Finally, the benefits of AI
automation and the additional resources made available by economic expansion motivate
and facilitate further AI investment, which reinforce the two-way relationship between AI
development and economic outcomes, and create potential conditions for growth acceler-
ations resulting from AI development. Importantly, our model incorporates production
bottlenecks arising from differential productivity growth, frictions affecting the invest-
ment process, and other constraints on technological progress, such as energy limitations
and environmental heating effects from extensive computation, that may have a material
effect on the paths of both AI development and economic growth.

The model consists of three distinct modules. The first is the AI development module,
which maps investment in AI capabilities to the accumulation of effective compute, the key
input required for training and developing AI systems. This module tracks how different
investment profiles translate into compute resources over time. The second component is
the AI automation module, which connects the available effective computing resources to
the automation of labor tasks. It captures automation along both the extensive margin
(which tasks can be automated) and the intensive margin (how efficiently these auto-
mated tasks are performed). The third component is the macroeconomic module, which
translates labor market automation into broader economic outcomes. This final module
shows how automation affects aggregate output, consumption, and investment patterns
in the economy.

The AI development module is perhaps the most novel and significant contribution of
GATE to the existing literature on the economic impacts of AI. We set out to model the
engineering details of the AI development process in a realistic yet tractable way. We
clarify why we can think of AI development as primarily driven by the gradual accumu-
lation of a key input, which we call effective compute, and clarify how we expect the cost
of this key input to evolve over time in response to investments in hardware and software
R&D. The key goal of this module is to model the relationship between any compute
investment path (measured in $) and the stock of effective compute (measured in effective
FLOPs or eFLOPs) employed for the training and deployment of AI systems, taking into
account the various frictions and limits affecting the AI scaling process. This module
also clarifies some of the engineering tradeoffs faced in allocating effective compute be-
tween various AI-specific uses such as training larger models or running more instances
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of existing models (i.e., inference).

One of the key goals of the AI development module is to inform the economics community
about the engineering process behind AI development and to propose a tractable modeling
strategy that captures the key features of this process. The AI development module is
autonomous and can easily be embedded in models that take different stances on other
key economic phenomena, such as the scope of AI automation or the macroeconomic
implications of any given level of automation (that we embed in the second and third
modules of GATE).

A second key component of our model is a characterization of the relationship between
AI capabilities and automation, which is captured by our AI automation module. This
module has two key ingredients. First, we adopt a framework that maps two inputs
— the scale of training compute and the scale of inference compute—to the fraction of
economic tasks that can be automated by AI systems and to the increase in the amount
of effective resources (or effective “labor”) available to deliver each automated task. This
approach is inspired by prior theoretical work on AI capabilities (Moravec, 1976; Cotra,
2020). Intuitively, as more computing power becomes available for training and running
AI systems, these systems become more capable and can perform a growing range of
tasks traditionally done by humans. Moreover, as the automation process unfolds, these
AI-powered ‘digital workers’ can often operate more efficiently than humans, requiring
fewer resources to complete the same tasks.

A further ingredient of this module characterizes how human labor is reallocated as AI
automation progresses. We analyze two polar opposite scenarios: perfect reallocation,
where workers displaced by automation smoothly transition to remaining non-automated
tasks, and complete displacement, where automated workers permanently exit the labor
force. This framework enables us to study how labor mobility shapes both the automa-
tion process and broader economic outcomes. Alternative specifications of labor market
dynamics can be integrated with other GATE modules in subsequent work.2

Finally, we embed the previous two modules into a standard macroeconomic frame-
work (which we also call our macroeconomic module). This is a standard Ramsey-Cass-
Koopmans framework with endogenous saving and a constant returns to scale aggregate
production function combining a labor composite (which is gradually automated by AI),
with accumulable and non-accumulable capital. The social planner is assumed to op-
timally choose savings, investment in AI inputs and investment in other (i.e. non-AI)
capital goods in order to maximize the net present value of consumption for the repre-

2Partial reallocation scenarios introduce additional complexity by requiring workers to be allocated
across tasks based on both current productivity and the expected timing of future automation. We focus
on these boundary cases to maintain analytical clarity while capturing key economic mechanisms.
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sentative household. The model embeds adjustment frictions governing the process of
physical capital accumulation, in line with the existing literature. Moreover, given our
extensive modeling of technical progress affecting AI development in the AI development
module, we omit non-AI related TFP growth from our macroeconomic module. This as-
sumption is made for simplicity as well as computational tractability, and could be relaxed
in future iterations of the model. Notably, we also allow for the consideration of a third
non-accumulable factor of production F 3, which can be thought of as natural resources
or land. This is done to allow users to specify the existence of long-run non-accumulable
factors (that remain non-accumulable in the advanced stages of automation), that may
yield additional bottlenecks to economic growth as AI automation advances.

Beyond the three key modules outlined above, we implement two additional add-ons to
the model that can be switched on and off by users when conducting simulations. Our
first add-on is the ’Positive externalities from R&D’ module. It allows us to model how
society might underinvest in AI software and hardware R&D when positive spillovers
exist and are not fully internalized by the relevant economic decision makers. This add-
on hence allows user to specify wedges between the social returns to R&D and the private
returns to R&D. This allows the user to run simulations with different assumptions about
how externalities might cause R&D underinvestment, potentially resulting in socially
suboptimal development of AI capabilities and automation.4

The second add-on permits the modeling of uncertainty affecting the social planner’s
decisions concerning investments in AI inputs and AI R&D. Intuitively, we may expect
uncertainty regarding the returns to AI-related investments to depress society’s incentives
to invest in AI development and thus lead to more moderate paths of AI investment and
automation than in our baseline perfect foresight specification.

Throughout our analysis, we focus on solving the social planner’s problem: a social planner
chooses the path of saving and investment (in compute, R&D and non-compute capital)
to maximize the net present value of the consumption of the representative consumer. We
do this to avoid making potentially arbitrary choices about market structures, particu-
larly concerning the markets directly involved in the development and deployment of AI.
Performing simulations of the macroeconomic impact of AI development under alternative
assumptions concerning market structures for key markets (e.g. the market for effective
compute and ideas affecting hardware and software development) is left for subsequent
work.

GATE facilitates the quantitative analysis of the macroeconomic impact of advanced AI
3We also refer to this additional factor as non-accumulable capital
4As an intuition, this add-on allows users to embed market failures from R&D externalities in a social

planner setting by solving a “myopic” social planner problem.
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under a wide range of scenarios and structural assumptions. The framework can be used to
simulate the trajectories of key economic variables (such as output, consumption, savings
and investment) under different conditions concerning technology, preferences, frictions
and uncertainty. Users can calibrate expectations about the path of investment and eco-
nomic growth as well as the overall timelines of the process of AI automation. Moreover,
the model can be readily extended to analyze the counterfactual impact of different policy
interventions in areas such as labor market regulation, taxation and subsidies.

3 The AI Development Module

The AI development module models how investments in AI (for example, spending on
GPUs, semiconductor fabs, chip design, and improved algorithms or architectures) trans-
late into the resources available for training and deploying AI models. At its core, this
process can be viewed as a mapping from “dollars invested” to a budget of “effective
compute” (measured in effective FLOP)5 that powers AI systems at each point in time.

Hardware and software R&D contribute to expanding this computational capacity in dis-
tinct ways. Software advances (e.g., novel training algorithms) enhance the efficiency
of both the existing stock of compute and all future expansions, while hardware im-
provements reduce the cost and increase the performance of new compute acquired going
forward. Together, these parallel R&D activities progressively lower the price of effec-
tive compute, enabling greater AI capabilities through increased training and inference
capacity.

In addition, the AI development module specifies the technological parameters that govern
how effective compute is allocated between training (to create more capable models) and
inference (to deploy these models for economic tasks).

This first module showcases how increases in investment lead to increases in the computing
resources available for the development of increasingly more capable AI systems. In turn,
this sets the stage for the automation module, that links the development of more capable
systems to the automation by AI of an increasing share of labor tasks currently performed
by humans. In economic terms, the AI development module pursues two main objectives.
First, it specifies the laws of motion for two key AI-related state variables—effective
compute and the size of the largest training run. Second, it describes the engineering
tradeoffs governing how effective compute is split between training and inference: for
example, how investing more compute in training can reduce the runtime demands per

5Floating point operations per second (FLOP) are a measure of the stock of compute available for AI
training and inference. Effective compute adjusts these FLOP for improvements in software or algorithmic
performance. For more details, see Ho et al. (2024).
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task, or how adding inference compute can offset smaller training budgets.

This section presents a detailed model of the key engineering details that govern the
process of AI development, aiming to make these concepts accessible to a general audience.
The exposition proceeds in the following steps:

1. Section 3.1 explains the concept of ‘effective compute’ - a metric combining raw
computational power and algorithmic efficiency - and establishes it as the key input
for AI development. Drawing on scaling laws research and empirical evidence of
compute’s central role in AI progress, we justify using effective compute as a suffi-
cient statistic for tracking AI capabilities, as it captures both hardware and software
improvements in a unified framework.

2. Section 3.2 analyzes the allocation of effective compute between training and in-
ference phases in AI systems. Training represents a fixed cost producing non-rival
model weights, while inference is a variable cost that can enhance or deploy trained
models. We formalize this training-inference tradeoff and show how it affects both
which tasks can be automated and how many digital workers can operate in parallel.

3. Section 3.3 examines the current empirical relationship between investment and ef-
fective compute. We establish baseline costs using individual GPU purchases, then
analyze how large-scale deployments face higher costs from infrastructure require-
ments and supply chain frictions. This helps ground the model’s treatment of the
relationship between monetary investment and compute capacity.

4. Section 3.4 models how technological progress reduces the cost of effective com-
pute through two channels: hardware advances (improving compute per dollar) and
software advances (making computations more efficient), with an important asym-
metry: software improvements enhance all compute while hardware improvements
only affect new compute.

5. Section 3.5 extends our technology progress model by incorporating physical and
engineering limits that bound both hardware and software efficiency gains as they
approach theoretical maxima.

6. In Section 3.6, we incorporate key constraints on expanding compute: non-linear
adjustment costs from supply-chain bottlenecks, rapid hardware depreciation, and
fundamental thermal limits on total usable compute.

7. Finally, Section 3.7 provides a summary of the relationship between AI related in-
vestments and the time path of effective compute endowments, as well as a summary
discussion of the allocation of effective compute and its various uses.
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3.1 Key Input of AI development: Effective Compute

The development of artificial intelligence systems relies fundamentally on computation—
the processing of mathematical operations by computer hardware. Modern AI training
proceeds by iteratively adjusting millions or billions of parameters in neural networks
using vast amounts of computation, measured in floating point operations (FLOP). This
computational process occurs in two distinct phases: training, where the AI system learns
patterns from data, and inference, where the trained system is deployed to perform tasks.

A key lesson from the history of AI research, articulated by Sutton (2019), emphasizes
the importance of raw computation:

The biggest lesson that can be read from 70 years of AI research is that general
methods that leverage computation are ultimately the most effective, and by a
large margin... Seeking an improvement that makes a difference in the shorter
term, researchers seek to leverage their human knowledge of the domain, but
the only thing that matters in the long run is the leveraging of computation.

This insight has been validated by recent work on scaling laws (Kaplan et al., 2020;
Hoffmann et al., 2022), which shows that the performance of AI systems can be predicted
remarkably well using simple functions of computational resources.

While Sutton’s “bitter lesson” underscores the primacy of raw computational power, mod-
ern evidence shows that algorithmic innovations can also meaningfully reduce the FLOPs
needed to reach a given performance level. To capture this, researchers quantify effective
compute—an adjusted measure of FLOPs that accounts for how each real FLOP grows
“more potent” as algorithms improve. Concretely, studies find that the raw compute re-
quired to train neural networks for the same benchmark accuracy roughly halves every 9
to 16 months (Hernandez and Brown, 2020; Erdil and Besiroglu, 2022; Ho et al., 2024).
In other words, one unit of compute today can produce results that once demanded two
or more units of compute a year ago. By incorporating these efficiency gains into a single
metric, effective compute provides a simpler way to track overall AI progress than raw
FLOP alone.

To capture both hardware and algorithmic contributions to AI progress, we adopt effective
compute as our core input variable—a notion that has gained traction among researchers
and industry practitioners.6 Historical analyses by Moravec, Good, and Kurzweil antici-
pated that once raw computational power approached certain thresholds, AI capabilities
would see large breakthroughs, a view that has found more rigorous support in mod-
ern scaling-law research (Kaplan et al., 2020; Hoffmann et al., 2022). Indeed, empirical
work on computer vision and language models shows that increasing training compute,

6For example, see Anthropic (2023) for Anthropic’s Responsible Scaling Policies.

12



together with algorithmic improvements, systematically yield higher performance (Her-
nandez and Brown, 2020; Erdil and Besiroglu, 2022; Ho et al., 2024). Unifying gains in
hardware (FLOP per dollar) and algorithmic efficiency into a single measure, effective
compute, furnishes a tractable way to capture the key determinants of AI capabilities.
Of course, this approach does not capture every nuance (considerations such as serial vs.
parallel constraints or data availability are omitted), but substantial evidence (see Ap-
pendix B) indicates that when forecasting AI progress at scale, few factors rival compute,
duly adjusted for software improvements, in predictive power.

3.2 AI training, Inference, and the Training-Inference Trade-off

In this section we explain how the key input described in the previous section, effective
compute, is used for the development and deployment of increasingly capable AI systems.

Modern AI systems broadly operate in two phases: a training phase, where the system
learns from data, and an inference phase, where the trained system is deployed to perform
tasks. During training, the system adjusts its parameters to improve performance, typi-
cally through iterative optimization over large datasets. During inference, these learned
parameters are used to process new inputs and generate outputs.

In practice, the distinction between training and inference is often less clear-cut. Mod-
els can be fine-tuned or continually updated after deployment, incorporating new data
to improve performance Shi (2024). Additionally, intermediate versions of models—
checkpoints—may be deployed even as training continues, allowing for early utilization of
the model’s capabilities. Techniques like online learning blur the lines further by enabling
models to adapt in real time during inference, as demonstrated by test-time training,
where models update their parameters with each new data sample before making predic-
tions Sun (2020).

Nevertheless, there remains a fundamental economic distinction between training and
inference compute. Training compute represents a fixed cost that produces non-rival
goods—the model weights—which can then be deployed across any number of instances
without needing to be retrained. Once a model is trained, its capabilities can be repli-
cated across many deployments, much like how research and development costs produce
knowledge that is non-rival and can subsequently be widely applied. In contrast, infer-
ence compute represents a recurring (or variable) cost: each use of the model requires
computational resources. This distinction between fixed costs producing non-rival capa-
bilities and variable costs of deployment proves crucial for modeling the economics of AI
development.
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AI training runs AI training is the computationally intensive process through which
models acquire their capabilities by iteratively updating parameters—often numbering in
the trillions—based on training data. While training requires substantial computational
resources, it produces non-rival outputs: once trained, a model’s parameters can be copied
and deployed across any number of instances without additional training costs, much like
traditional research and development investments in standard R&D-based growth models.

We first consider the evolution of the stock of effective compute that is devoted to AI
training. If the largest training run at time t is given by CT ptq, then we define a simple
update rule:

9CT ptq “ Dptq. (1)

Here, Dptq is the amount of effective compute allocated to training AI at time t.

This model assumes continuous training, where compute is incrementally added to the
largest training run at each timestep, rather than being allocated in discrete runs. Two
main considerations justify this simplification. First, the exponential growth of training
budgets means that the most recent increments dominate the total, so the difference
between a smooth versus staggered allocation becomes negligible (Barnett, 2023). Second,
modern training pipelines are in fact highly iterative, making an essentially continuous
framework a natural abstraction.7 The exponential growth in compute means that recent
training runs tend to dominate the total compute allocation, making the precise timing
of individual training runs less significant for modeling long-run trajectories.

AI Inference Compute can be used for two primary purposes: training, which not
only improves models to automate a larger set of tasks but can also reduce inference costs
on tasks already automated (e.g., through “overtraining” or distillation), and inference,
which applies models to perform economically valuable tasks. Additionally, inference can
enhance the capabilities of AI models by extending runtime, allowing for deeper analysis
or reasoning, and enabling parallel execution of multiple model instances (Open AI, 2024;
Brown et al., 2024). For example, a chess engine can utilize more computation to search
deeper, evaluating more moves before making a decision (Campbell et al., 2002). Similarly,
language models can be run in parallel, and intelligently combining their outputs often
improves performance, especially when solutions can be automatically verified (Wang
et al., 2022).

7Modern AI development involves multiple continuous training phases including pre-training, syn-
thetic data generation and training, reinforcement learning from human feedback (RLHF), specialized
task-specific training, and continuous model updating. Early checkpoints can be deployed while training
continues, and pre-trained models can be enhanced through additional training on new datasets or objec-
tives. This multi-phase, continuous nature of AI development makes the continuous training assumption
appropriate for modeling purposes.
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Training helps AI systems acquire base capabilities, while inference compute builds upon
this by improving task execution. With additional inference compute, AI systems can
devote more “thought” to solving complex problems, such as generating many candidate
solutions and selecting the best, or performing intermediate reasoning steps. These pro-
cesses enable AI to tackle a broader range of tasks more effectively, even when the training
resources remain fixed.

Tr
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 c
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pu
te

Constant level of CT+ι (t)

Runtim
e at ιmin

More capable model with more 
inference and less training compute

Runtim
e at ιmax

More capable model with more 
training and less inference compute

Inference compute

Figure 2: A schematic of the training–inference tradeoff, showing that the same overall
capability (curves labeled “constant level of CT `ιptq”) can be reached by different mixes of
training compute (vertical axis) versus inference compute (horizontal axis). Moving “up”
invests more in training to reduce inference needs, while moving “right” adds inference to
compensate for a smaller training run. The lines labeled “Runtime at ιmin” and “Runtime
at ιmax” illustrate these feasible extremes, highlighting how a model’s performance can be
maintained or enhanced by balancing the fixed (training) and variable (inference) portions
of the total compute budget.

We account for this by adjusting the total compute expenditure for model capability
using an “inference multiplier,” which extends the range of tasks that can be automated
beyond the effective training compute, though these additional tasks have correspondingly
high inference requirements if they are actually deployed at scale. Formally, we let ι vary
between some lower bound and a maximum ιmax. Then, to measure total system capability
(training plus scaled-up inference), we write:

CT `ιptq “ CT ptq ˆ ι
1
m , (2)

where m is the slope of the training–inference tradeoff. Empirical observations suggest
m « 1 ´ 2: each 1-2 OOMs of inference can substitute for about 1 OOM of training
(Villalobos and Atkinson, 2023).
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Setting ι to ιmax effectively allows very deep runtime for tasks that require it, without
imposing any mandatory additional cost on simpler tasks. This is because inference
usage can be chosen independently for each task. Thus, there is no downside to choosing
ι “ ιmax; simpler tasks remain inexpensive, while more complex tasks gain the option—but
not the obligation—to leverage additional inference. 8

Note that while ι sets an upper limit on how much further inference can extend a model’s
base capability, it does not itself eliminate inference costs: each additional unit of runtime
compute must still be purchased within the model’s resource budget. In other words, ι

specifies what is technologically possible, but the economy only scales inference up to the
point where the resultant gains in automated tasks justify the associated costs.

Intuitively, the total compute budget captures how a given performance level can be
achieved in multiple ways: a smaller model (trained with less effective compute) but run
with more inference, or a larger model (trained with more effective compute) but run with
less inference. This tradeoff reflects fixed vs. variable costs: large models incur higher
one-time (training) costs but often require fewer inference resources per task, whereas
smaller models demand lower training costs but more inference effort to match the same
performance. As discussed next in Section 4 (especially subsections 4.1 and 4.2), these
distinctions feed into how AI development affects both the extensive (which tasks can be
automated) and intensive (how many digital workers can be deployed) margins of labor
automation.

As we suggested earlier, the tradeoff outlined above is bounded. According to Villalobos
and Atkinson (2023), most individual techniques (e.g., pruning, repeated sampling) can
shift at most about 1–2 orders of magnitude (OOM) between training and inference while
maintaining the same performance. Even when combining techniques, the total span
rarely exceeds a few OOMs overall (Ibid.). Consequently, no amount of inference alone
can fully replace a sufficiently large training run beyond these bounds. In particular, if a
task is too complex relative to the size of the trained model, extra inference compute will
not suffice, so training a larger model remains the only way to automate it.

Taking stock of the above, expanding the training compute has the primary effect of in-
creasing automation along the extensive margin, expanding the set of tasks that AI can

8For instance, if the largest training run CT ptq involves 1030 FLOP and ιmax “ 100, then with a
tradeoff slope of m “ 2 we get

CT `ιptq “ CT ptq ˆ ι
1
mmax “ 1030 ˆ 1001{2 “ 1031 FLOP.

This exemplifies how leveraging additional inference capacity (up to 100ˆ in this example) can increase
effective compute by one order of magnitude. In practice, the social planner (or firm) selectively allocates
that extra runtime only to tasks where it is beneficial, so no global overhead arises from letting ι “ ιmax.
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do. Inference compute affects automation along both the intensive margin (by powering
more AI systems performing economic tasks) and the extensive margin (by effectively
“stretching” a smaller model). More details about the mapping between compute alloca-
tions and both margins of automation are provided in Section 4. While solving GATE,
we assume that the social planner optimally allocates finite compute across training and
inference to advance automation and maximize the net present value of consumption for
the representative agent.

3.3 The Cost of Compute Today

To ground our model empirically we need to estimate the relationship between investment
and effective compute. For small-scale purchases, this relationship is approximately linear.
The NVIDIA H100, currently the leading GPU for AI training, serves as a useful bench-
mark: at a price point of approximately $30,000, it can perform around 1015 FLOP/s,
or roughly 3 ˆ 1022 FLOP/year. This translates to approximately 1018 FLOP/year per
dollar when purchasing individual units or small quantities.

The economics change significantly when scaling to the levels required for large AI training
runs, which require thousands of interconnected GPUs. At these scales, two factors drive
up costs. First, there are substantial additional infrastructure requirements beyond the
raw hardware, including cooling systems and power delivery infrastructure, high-speed
interconnects for GPU communication, electricity and maintenance costs, and expenses
for software development and specialized personnel (Cottier et al., 2024).

Second, and perhaps most importantly for our analysis, at the macroeconomic level the
cost per unit of compute increases super-linearly with the scale of compute investments
due to adjustment frictions affecting the semiconductor supply chain (see Section 3.6).
This means that while small purchases face roughly constant marginal costs, at the global
level large-scale compute investments face sharply increasing marginal costs.

3.4 Technological Progress

Given its key role in determining the capabilities of AI systems, tracking the path of
effective compute endowments over time is at the core of GATE. In turn, the exercise of
forecasting the evolution of effective compute involves two key components: tracking the
build-up of the stock of compute (which we will denote Q, measured in FLOP/year) and
predicting future advancements in the underlying technology.9

9In economics jargon we can think of this exercise as predicting the path of investment flows into
effective compute and the path of the cost per unit of effective compute, with the latter being expected
to decline over time due to hardware and software improvements.
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Technological improvements in computing occur through two channels: hardware ad-
vances that increase the computational power per dollar (Hobbhahn et al., 2023), and
software/algorithmic advances that make each computation more efficient (Ho et al.,
2024; Erdil and Besiroglu, 2022; Hernandez and Brown, 2020). We model these through
two terms: hardware efficiency Hptq and algorithmic efficiency Sptq.

Hardware efficiency Hptq, measured in FLOP/year/$, represents how many floating point
operations per year one dollar of hardware investment can perform. We let Sptq denote
software efficiency, measured in eFLOP/FLOP. In other words, Sptq tells us how many
“effective FLOPs” one raw FLOP is worth. Both efficiency terms increase over time
through endogenous research efforts. The dollar cost per effective FLOP/year at time t

is thus given by:
1

Hptq ¨ Sptq
(3)

We model the evolution of hardware and software efficiency using a continuous-time analog
of the R&D-driven growth framework originally introduced in Jones (1995) and subse-
quently adapted for various technologies (Bloom et al., 2020). While this framework was
originally employed to model total factor productivity, it is sufficiently flexible to capture
the dynamics of more specific technologies.

In our formulation, each technology’s efficiency evolves according to a law of motion
that depends on the current stock of knowledge (or efficiency) and the intensity of R&D
investment. For hardware, let Hptq represent the efficiency level at time t, and let IRD

H ptq

represent the R&D investment devoted to hardware improvements. For software, let
Sptq denote the software efficiency level, and IRD

S ptq the corresponding software R&D
investment. We assume that improvements in hardware and software efficiency occur
according to the following continuous-time equations, presented side-by-side:

9Hptq

Hptq
“ θHrHptqs

´ϕH rIRD
H ptqs

λH ,
9Sptq

Sptq
“ θSrSptqs

´ϕS rIRD
S ptqs

λS (4)

Here, 9Hptq and 9Sptq represent the time derivatives of hardware and software efficiency,
respectively. The parameters θH and θS determine the baseline effectiveness of R&D
investment for hardware and software. The terms Hptq´ϕH and Sptq´ϕS capture the
intertemporal knowledge spillovers. Depending on the signs of ϕH and ϕS, these can
reflect a “standing-on-shoulders” effect (if negative) or a “fishing-out” effect (if positive).

By using total R&D investment as the key input, we simplify the modeling framework and
avoid the complexities of explicitly tracking intermediate inputs like human or AI labor. If
we wish to remain consistent with traditional views of human-centric R&D bottlenecks, we
can adjust the elasticity parameters (the λ terms) downward to obtain more conservative
outcomes. Additionally, as AI-driven automation reduces the reliance on human labor in
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certain innovation processes, framing inputs in terms of overall investment rather than
labor becomes increasingly relevant. This approach, while simpler, is thus flexible enough
to accommodate both conventional and more automated R&D scenarios.

When thinking through the consequences of investments in hardware and software R&D
it will be important to keep in mind a key difference between hardware and software
improvements: while software improvements apply to the entire stock of existing compute,
hardware improvements only apply to new flows of compute. The implications of this
asymmetry for the overall law of motion for effective compute are characterized formally
in Section 3.7.

3.5 Technological Constraints

The simplest version of the laws-of-motion described in the previous section have a major
shortcoming: they fail to account for ceilings and physical limits on technological progress.
We know that there are theoretical limits to key engineering variables such energy effi-
ciency, information processing and more (See Table 2 for some examples). Similarly, there
are known limits to algorithmic improvements. For example, we know that a non-trivial
fraction of standard algorithms have (asymptotic) runtime complexities equal to some
theoretical lower bound, and therefore do not permit further improvements to runtime
complexities. Hence, it is highly likely that progress in software, like hardware, will be
bound from above.

Limits Engineering Design and Validation Energy, Time Space, Time Information, Complexity

Abbe (diffraction) Error-corr. & dense codes Einstein E=mc2 Speed of light Shannon
Amdahl Fault-tolerance thresholds Heisenberg ∆E∆t Planck scale Holevo
Gustafson Landauer kT ln2 Bekenstein NC, NP, #P

Bremermann Fisher T(n)1/(d+1) Turing (decidability)

Table 1: Some fundamental limits to computation, adapted from Markov 2014.

To incorporate such upper bounds to technical progress into our framework, we modify
our model for both hardware and software efficiency levels, Hptq and Sptq. Specifically, we
introduce an additional free parameter to the laws of motion for the efficiency variables
that allows these efficiency terms to approach some maximum achievable level. This
modification provides substantial flexibility for conducting robustness checks of the model.
It also enables the incorporation of different sets of beliefs about the ultimate limits of
hardware and software efficiency improvements.

To take into account technological limits, weincorporate a function that bounds potential
efficiency as these terms approach their theoretical maxima. In continuous time, the laws
of motion for hardware and software become:
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9Hptq

Hptq
“ gHptq ΛHpHptqq,

9Sptq

Sptq
“ gSptq ΛSpSptqq (5)

Here, gHptq and gSptq capture the underlying growth potential for hardware and software
at time t, respectively, i.e. the growth rates in hardware and software in the absence of
technological constraints (i.e. the growth rates given by equation (4)). The functions
ΛHpHptqq and ΛspSptqq take values strictly between 0 and 1, and approach 0 as Hptq

or Sptq approach their terminal (maximum) values, which we denote Hmax and Smax

respectively. In particular, we define

ΛHpHptqq “
log Hmax ´ log Hptq

log Hmax ´ log Hp0q
, ΛSpSptqq “

log Smax ´ log Sptq

log Smax ´ log Sp0q
, (6)

thus the growth rates of hardware and software efficiency diminish as they approach their
respective theoretical limits.

3.6 Frictions Affecting Investments in Compute

At the macroeconomic level, the expansion of compute capacity faces three distinct types
of frictions that affect both the speed and cost of growth that we incorporate into our
model:

• Investment adjustment costs: Rapidly scaling compute hardware investment en-
counters non-linear costs due to supply chain and production bottlenecks. These
costs grow super-linearly with the rate of investment.

• Depreciation: Compute hardware depreciates through both physical degradation
and technological obsolescence at a substantially faster rate than traditional capital.

• Physical limits: Fundamental physical constraints, particularly physical heat dissi-
pation limits, impose fundamental bounds on maximum usable compute, regardless
of investment level.

We describe each of these frictions below.

Adjustment costs Expanding the compute stock involves more than the direct finan-
cial outlay for new hardware; it also entails overcoming production bottlenecks and supply
chain limitations. We model these challenges using adjustment costs that increase non-
linearly with the rate of investment in compute stock. Specifically, we assume that the
cost of increasing the compute stock Qptq by an amount Iqptq is given by:

IQptq “
Qptq

χaQHptq

ˆˆ

aQIqptqHptq

Qptq
` 1

˙χ

´ 1
˙

, (7)
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where IQptq is the total investment required, aQ is an adjustment cost parameter, and χ ą

1 captures the increasing marginal costs associated with rapid expansion. This reflects the
reality that significant increases in compute capacity cannot be achieved instantaneously
or without incurring disproportionately higher costs.

The parameter χ represents the degree of non-linearity in adjustment costs. Empirical
observations suggest that expanding compute capacity faces steeper challenges compared
to traditional capital investments. For instance, constructing semiconductor fabrication
plants (fabs) involves substantial capital expenditure and long lead times, often taking
1.6 to 2.2 years from construction to production (VerWey, 2021). Additionally, the supply
chain for advanced AI hardware depends on specialized equipment and materials that are
difficult to scale quickly. As a result, we consider values of χ greater than 2, indicating
that costs increase more than quadratically with the rate of investment.

Depreciation of compute stock Compute hardware depreciates more rapidly than
general capital due to technological obsolescence and hardware failures. Rapid advance-
ments in hardware efficiency render older equipment less competitive, while physical wear
and tear reduces operational reliability. To model depreciation, we assume that the com-
pute stock Qptq decays at a constant rate δQ, yielding:

9Qptq “ IqptqHptq ´ δQQptq, (8)

where Iqptq is the rate of investment in new compute stock and δQ is the depreciation
rate. Empirical evidence suggests that compute hardware depreciates at a faster rate
than standard capital, with estimates around 30% per year (Ostrouchov et al., 2020).
This high rate reflects both the physical degradation of components and the rapid pace
of technological innovation that can render existing hardware obsolete within just a few
years.

Physical limits and heating bottlenecks Physical constraints impose fundamental
limits on the expansion of effective compute. One significant constraint is the issue of
heat dissipation. As computational processes consume energy, they generate heat, and
there is a limit to how much heat can be dissipated without causing environmental harm
or damaging the hardware itself.

We incorporate this constraint by introducing a function gpQq that adjusts the usable
compute based on physical limits:

Q̃ptq “ gpQptqq, (9)

where Q̃ptq is the usable compute available for AI at time t after accounting for physical
constraints. Specifically, it is Q̃ptq—rather than the raw stock Qptq—that is ultimately
allocated to training and inference.
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The function gpQq is chosen to smoothly cap usable compute at CL: for small Q, gpQq «

Q, but as Q grows large, gpQq saturates near CL. This reflects the physical reality that
beyond a certain heat-dissipation limit, additional hardware investment yields little extra
usable compute.10 Specifically, we model gpQq as:

gpQq “
Q

Q
CL

` 1
, (10)

ensuring gpQq Ñ CL for large Q. This captures how environmental constraints ultimately
limit compute expansion. These physical limits are informed by fundamental principles
of thermodynamics and environmental capacity. For example, the Earth’s ability to dis-
sipate heat without significant temperature increases is finite, and large-scale computing
operations could contribute to global heating.

3.7 Taking Stock: From Investment to the Path of Effective
Compute and Beyond

The main goal of Section 3 was to fully characterize GATE’s AI development module,
which maps any given path of investment in AI specific inputs (with its three components,
namely hardware investment, hardware R&D investment and software R&D investment)
into a path of effective compute endowments over time. Moreover, the AI development
module also laid out the problem of allocating effective compute resources at each point in
time across training and inference uses, with allocations of effective compute to training
determining the path of another key state variable of the model, namely the size of the
largest training run.

In other words, the key goal of the AI development module was to describe the state
update rules for the two main AI-related state variables of our model: effective compute
and the size of the largest training run. In what follows, we summarize the discussion
provided in the rest of Section 3, state the main results (i.e. the two state update rules)
and clarify the economic intuition.

Law of motion for effective compute Effective compute is the key input for the
development and deployment of AI systems in GATE. Consequently, tracking the path of
effective compute across time is critical for mapping out the path of AI automation and
hence the downstream impact of AI on the economy.

Effective compute was modeled as a summary statistic of the computational resources
available to society at each point in time. It aims to capture a notion of “quality adjusted”

10We set CL “ 2.0ˆ1038 FLOP/year based on theoretical maximum CMOS efficiency (4 ˆ1015 FLOP/J
(Ho, Erdil and Besiroglu, 2023)) multiplied by 1% of Earth’s annual solar energy budget, providing a
physically-grounded upper bound on sustainable computation.
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compute that takes into account the evolution of the quality of both hardware and software
over time.

The process of effective compute accumulation sketched over the previous subsections
embeds three different margins of compute accumulation: accumulation of hardware,
improvements in hardware efficiency (as a result of hardware R&D investment) and im-
provements in software efficiency (as a result of software R&D investment). Importantly,
hardware efficiency gains and software efficiency gains display a key asymmetry: while
software efficiency gains apply to the entire stock of existing compute, hardware gains
only apply to new hardware/new flows of compute.

Formally we think of the model being initialized at a certain time 0, with society having
a given stock of effective compute at its disposal. This is given by:

Cp0q “ Q̃p0qSp0q (11)

where we typically specify that Sp0q “ 1, i.e. we measure algorithmic efficiency relative
to the start of the simulation. Subsequently, three state variables jointly determine the
accumulation of effective compute: the usable compute stock Q̃ptq, hardware efficiency
Hptq, and software efficiency Sptq. When the physical compute stock Qptq is sufficiently
small compared to the thermal limit CL,11 it is reasonable to model the evolution of
effective compute using the law of motion:

9Cptq “ Cptq
9Sptq

Sptq
´ δQCptq ` IqptqHptqSptq (12)

Intuitively, software efficiency improvements apply to the entire stock of effective compute
such that the growth rate of software efficiency applies to the entire stock of effective
compute (RHS term 1), the depreciation of compute hardware leads to the loss of the
entire amount of effective compute supported by that compute (i.e. the depreciation
rate of compute and effective compute are the same - RHS term 2), and investments in
compute augment the stock of effective compute in direct proportion to each period’s
hardware and software efficiency (RHS term 3).

Law of motion for the size of largest training run At each point in time, society
faces the problem of how to allocate its computing resources to training and inference,
as explained in Section 3.2. In the context of GATE the compute allocation decision is

11In practice, we use a saturating function g
`

Q
˘

“
Q

Q
CL

`1
to capture heat dissipation constraints. When

Q ! CL, we have gpQq « Q, making the simpler, linear form a good approximation. In regimes where
Q approaches or exceeds CL, the law of motion must be adjusted to incorporate 9Cptq “ g

`

Qptq
˘

ˆ Sptq

(plus appropriate product-rule terms).
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assumed to be taken by a social planner aiming to maximize the net present value of
utility flows for the representative household (see Section 5).

The social planner chooses the amount of effective compute to allocate to training each
period, which we denote Dptq taking into account 4 considerations:

1. the training vs inference tradeoff in determining the capability and inference costs
of AI systems (see equation (2) in Section 3.2)

2. the mapping between AI system technical performance and the extensive margin of
automation (see equation (13) in Section 5)

3. the mapping between model size and runtime effective compute requirements for
each automated task (see equation (15) in Section 4.2).

4. the economic benefits from automating tasks, pinned down by the aggregate pro-
duction function (see equation (28) in Section 5)

Intuitively, items 1 to 3 above pin down the relative costs of extensive vs intensive margin
automation, whereas item 4 pins down the relative benefits of extensive vs intensive
margin automation of labor tasks. These considerations lead to the following law of
motion governing the size of the largest training run:

9CT ptq “ Dptq

This equation captures how the social planner’s optimal allocation of compute to training
Dptq directly determines the growth rate of the largest AI training run over time.

4 The AI automation module: Mapping Effective
Compute to Automation

This section explains how we model the automation of economic tasks by AI systems,
outlining the link between AI investments and the resulting automation of human labor
(we also call this component of the model the “automation module”). We employ a
compute-based framework to forecast AI automation, in which the amount of computation
available to AI systems at each point in time determines their capabilities. We thus
connect physical compute, hardware improvements, and algorithmic improvements to the
fraction of tasks AI can automate and to the increase in the effective labor force brought
about by AI for each automated task.

Intuitively, as AI systems are trained on more effective compute, they can replicate a
greater share of human labor if provided sufficient inference compute. Moreover, for each
automated task (i.e. task that AI systems are able to perform at each point in time),
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allocating more runtime compute to systems performing that task can be thought of as
creating a larger number of “digital workers” assigned to completing that task. By linking
training compute to automation, the automation module formalizes the key mechanism
linking advancing AI technology to economic outcomes. For an economics audience, the
key technical goal of this module is to clarify the mapping between a certain allocation of
effective compute and the distribution of “digital workers” across the space of labor tasks,
taking into account both the extensive and the intensive margins of the AI automation
process.

To fully specify the AI automation process, the exposition in this section is organized in
three parts. We first focus on the modeling of the most salient aspect of the automation
process: the extensive margin of automation or the process through which increased
resources dedicated to AI leads to more advanced systems that are capable of completing
a wider and wider fraction of labor tasks. This is done in Section 4.1. We then proceed
to characterizing the intensive margin of automation, or the mapping between allocations
of runtime compute to automated tasks and the supply of “digital workers” brought to
bear in delivering these tasks (Section 4.2). Section 4.3 discusses the issue of human labor
reallocation in response to AI automation, though this typically has modest implications
for the overall path of output growth associated with AI automation.

4.1 Task Automation: The Extensive Margin

Perhaps the most salient mechanism through which AI development affects macroeco-
nomic outcomes in GATE is via the gradual automation of labor tasks. Intuitively, as
the effective compute endowments of society increase, we can expect more capable AI
systems to be trained. In turn, these systems are able to complete an increasing share
of tasks currently performed by humans. We call this process the extensive margin of
AI automation. Moreover, at the same time, increased effective compute resources mean
that more compute can be allocated to runtime compute, such that more instances of
the models can be operated at the same time. We think of this as equivalent to running
more “digital workers” in parallel, and refer to this process of running a larger number of
instances of AI models as the intensive margin of AI automation.

In this section, we characterize the process of AI automation on the extensive margin
within GATE. Following much of the existing literature, we model the space of labor tasks
as a continuum of unit measure. We then model the extensive margin of the automation
process as a mapping between the compute-based capability measure CT `ιptq (i.e., the
theoretical AI capability derived from the largest training run CT ptq enhanced by inference
scaling) and the fraction of labor tasks that can be automated at each point in time, which
we denote fptq. Our approach to specifying this process is inspired by Davidson (2023)

25



and is similar to Korinek and Suh (2024). For a detailed justification of our compute-
based approach to modeling AI capability development and task automation, we refer
readers to Appendix B.

In line with previous work, we model the automation function f as a smooth function
of effective compute. This means that as CT `ιptq increases over time, the share of tasks
in the economy that AI can perform grows gradually and continuously. This process
continues until AI capabilities reach parity with human capabilities and all economically
relevant tasks become automated.

Both our model and those of Davidson and Korinek and Suh share a core assumption: AI
systems trained with more compute become capable of automating increasingly complex
tasks. This creates a direct link between advances in computing power and the expansion
of AI’s economic impact through task automation.

Full automation requirement

100% of tasks automated

75

50

25

0

Total compute

Figure 3: Relationship between total compute and task automation. Each curve repre-
sents a scenario where increasing compute gradually automates a greater fraction of tasks,
with full automation achieved at varying levels of total compute. The dots indicate the
points at which 100% of tasks are automated for each scenario.

To formalize the process of AI automation we opt for a simple piece-wise log-linear func-
tion that links effective compute to the fraction of labor tasks that can be automated.
This function has three key parameters. The first parameter is the initial fraction of auto-
mated tasks (finit).12 This parameter initializes the share of tasks automated at the start
of simulations and aims to capture the fact that the current level of automation is already
non-zero. The second is the compute required for full automation (T ). More concretely,

12We calibrate finit by matching today’s observed ratio of compute spending to total output. Specifi-
cally, we fix all other relevant parameters (e.g., elasticity of substitution, capital stock) at their baseline
values, then solve for the fraction of tasks automated (finit) that makes the model’s equilibrium spending
on compute align with the current actual share of GDP devoted to computing resources.
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T represents the total effective compute (in FLOP) needed to train AI systems capable
of performing essentially all tasks in the economy, in line with the “compute-based” per-
spective discussed in Appendix B. The third is the “FLOP gap” p∆FLOPq, which governs
how much compute (relative to T ) is needed before systems begin automating tasks above
their initial level of finit.

Formally, we map the relationship between effective compute CT `ιptq and the fraction of
tasks automated via the function f : Rě0 Ñ r0, 1s given by:

fpCT `ιptqq “

$

’

’

’

&

’

’

’

%

finit, if CT `ιptq ď T
10∆FLOP

finit ` p1 ´ finitq
log CT `ιptq´log T

10∆FLOP
log T ´log T

10∆FLOP
, if T

10∆FLOP ă CT `ιptq ď T

1, if CT `ιptq ą T

(13)

It is important to note that while we use this simple parametric functional form for
tractability, our model’s framework can accommodate any arbitrary function mapping
compute to automation levels.

With this type specification in place, the key feature of economic interest is the slope of
the automation function f . This represents how much an increment of effective compute
results in additional automation at each point along the automation path. To pin down
this slope, we adopt the “FLOP gap” (denoted ∆FLOP) concept introduced by Davidson
(2023). This parameter quantifies the log-space difference between two critical points:
the effective compute required for full task automation pT q, and the threshold T

10∆FLOP at
which AI systems begin to “significantly impact”13 the global economy. Because there is
substantial uncertainty around this gap, and hence around how quickly automation picks
up once we exceed T

10∆FLOP , we allow users to sample from a wide range of plausible values
for ∆FLOP. In practice, a larger FLOP gap implies a more gradual onset of automation,
while a smaller gap implies that once we pass the initial threshold, automation accelerates
relatively quickly.

Intuitively, as more resources are allocated to AI over time, the size of the largest training
run grows,14 thereby expanding the set of tasks AI can automate (see Section 3.2). With
a larger trained model, the social planner can deploy AI systems on an increasing share
of tasks, provided that the benefits of automation exceed its costs. These benefits depend
on factors such as the slope of the automation function, the substitutability of different
tasks, and labor market frictions (detailed in Section 5). Consequently, we expect the

13By “significantly impact,” we mean that the fraction of tasks automated starts to rise materially
above finit. One could, for instance, interpret this threshold as the point at which 10% or 20% of tasks
become automated, rather than waiting until it is strictly zero.

14Assuming that some portion of effective compute is consistently allocated to training.
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fraction of automated tasks to rise gradually over time, tracing out an extensive margin
of AI-driven automation.

We recognize that the specification of the “labor task space” and of the automation process
are simplified in our setting, with key aspects of heterogeneity between tasks documented
in the previous literature (e.g., cognitive vs. manual tasks, routine vs. non-routine tasks)
and the possibility of new labor tasks being created during the automation process both
currently omitted from our analysis. We hope some of these features and extensions will
be added in subsequent work.

4.2 Task Automation: The Intensive Margin

A second key component of the automation process is the intensive margin. Intuitively,
this captures the answer to the question: “When a task is automated, by what order of
magnitude do we expect the effective supply of labor for that task to increase?”

As mentioned above, AI models have two types of computational demands. The first
is training compute, which is the computation required to learn from data and update
a model’s weights to implement the algorithms required to perform various tasks. The
second is inference or runtime demands. This is the computation required to run an AI
system once it has been created. The runtime compute demands vary by task, with “more
challenging” tasks typically requiring models that use both more training compute and
runtime compute.

To model intensive margin automation, we create the notion of “digital workers” or “digital
worker equivalents,” which captures the increase in the task-level labor supply associated
with a certain allocation of computing resources to the delivery of each task in an intuitive
way: “how many human workers would we need to perform the same amount of each task
as an AI system of a certain size and allocated a certain amount of runtime compute?”

We compute the number of “digital workers” allocated to each task (Ni) by taking the
ratio of the runtime compute allocated to that task and the runtime compute requirements
for the task. Formally, if i ď fptq denotes the set of automated tasks at time t, we write:

Niptq “
CI,iptq

Riptq
, (14)

where CI,iptq is the total runtime computation allocated to task i at time t, and Riptq is
the corresponding runtime compute requirement. Both are measured in effective floating
point operations (eFLOP) per unit time.

Recall that fpCT `ιptqq is the function mapping effective compute to the fraction of tasks
automated at time t. In other words, if fpCT `ιptqq “ x, then tasks in the interval r0, xs
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can be automated. Since i here refers to the task index in r0, 1s, small values of i represent
relatively simpler tasks and larger values of i represent more complex tasks.

We model Riptq according to

Riptq “ max
ˆ

1,
f´1piq

CT ptq

˙m

loooooooooomoooooooooon

Task-specific inference multiplier

ˆ 10γ0`γ1i
loomoon

Minimum runtime cost

, (15)

where i is the task index, and f´1 is the inverse of f . Intuitively, if fpCq gives the fraction
of tasks automated by compute level C, then f´1piq tells us how much effective training
compute is needed to automate a task indexed by i at minimal inference cost. Meanwhile,
CT ptq is the largest training run at time t, m is the slope from (2), and γ0, γ1 determine
the baseline and slope of the task-level runtime requirements in orders of magnitude.

It is important to note the distinction between the “inference multiplier” ι (which features
in equation (2)) and the task-specific inference multiplier introduced in equation (15)
above. While (2) introduces ι as a global scale factor that raises system capability from
CT ptq to CT `ιptq and thus permits the automation of a higher fraction of tasks, the task
specific inference multiplier captured by expression max

´

1, f´1piq
CT ptq

¯m

applies individually
to each task, and captures the fact that tasks with compute requirements greater than
CT ptq require additional inference costs to be incurred. Since tasks demanding more than
ι1{m
max ˆ CT ptq are infeasible, the maximum chosen per-task multiplier equals ιmax.

This specification of runtime compute requirements, combined with our earlier definition
of how the fraction of automated tasks is computed, has the following effects:15

• Tasks which require less than CT ptq effective compute to automate are done at the
minimum possible inference cost of 10γ0`γ1i which increases exponentially with the
task index (which reflects task complexity) i.

• Tasks that require between CT ptq and CT `ιptq of effective compute to automate, i.e.
15The one wrinkle in the definition above is the inverse f´1: it must be defined carefully because

the function f : Rě0 Ñ r0, 1s is not necessarily injective or surjective, though it is guaranteed to be
increasing. To ensure that the inverse is a well-defined and single-valued function r0, 1s Ñ Rě0, suppose
that the infimum and supremum of the image of f are given by finf and fsup respectively, and that f has
a compact image so that it attains both its infimum and supremum. We make the following definition:

f´1piq “

$

’

’

&

’

’

%

0 if i ă finf

inftc P Rě0 : fpcq “ iu if finf ď i ď fsup

8 if i ą fsup

(16)

This is well-defined under the assumptions that f is increasing and has compact image, both of which
are satisfied for the functions we use in this work. The rough intuition is that f´1piq tells us how much
effective training compute is required to perform task i at its minimal possible inference cost.
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tasks that can only be automated by scaling up inference, are done at an inference
cost penalty scaling with the ratio of the task’s training compute requirements f´1piq

to the size of the largest training run CT ptq.

• Tasks that require more than CT `ιptq compute to automate cannot be automated
at all, as their execution is infeasible for the frontier models even with the global
inference multiplier ι set at its maximum.

Equations (15) and (2) capture the training vs inference tradeoff outlined earlier in the
paper (see Section 3.2). Larger models have larger fixed costs in terms of effective compute,
as more compute needs to be allocated to training them and hence cannot be used as
runtime compute for “digital workers”. On the other hand, larger models will make it
cheaper to create “digital workers” in terms of runtime compute requirements, particularly
for more complex tasks. This is because a smaller model that does not meet a task’s
training threshold must rely heavily on inference compute, while a model that does meet
that threshold requires proportionally fewer inference resources. As a result, smaller
models tend to deliver “digital workers” for complex tasks at higher variable cost in terms
of effective compute relative to larger models.16

All in all, the intuition behind the AI automation process described in the current and the
previous section can be summarized as follows. As society’s effective compute resources
increase as a result of investments in hardware and AI related R&D (both hardware
and software R&D), we expect more capable AI models to be trained (as more and
more compute is allocated to training) and more digital workers to be created for each
automated task, i.e. for each task that frontier AI models are able to perform (as more
and more runtime compute is allocated to each automated task). The model features we
described specify the mapping between any allocation of compute and distributions of
“digital workers” across “task space.” Over time, we expect these distributions of digital
workers to “broaden” over task space (i.e. have broader support over the unit interval of
tasks) as well as increase in “height” (i.e. for each automated task we expect the number
of “digital workers” made available by the automation process to increase over time).

16Note that the lower bound of the inference multipliers ιmin creates the possibility that when running
larger models, the planner might be forced by technological constraints to assign overcapable models
to simple tasks. In other words, in the presence of lower bounds for the inference multiplier, it may
sometimes be cheaper to execute simpler tasks with smaller rather than larger models. In our modeling
we ignore this possibility and assume that all automated tasks are executed at each point in time using
the frontier models. We expect this assumption to have very modest quantitative implications.
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4.3 Labor Reallocation

A third key component of the automation process, is the process of reallocation of hu-
man labor from automated to yet-to-be automated tasks. Intuitively, as AI automation
proceeds, the automation process can be expected to result in a significant increase in
effective labor supply for automated tasks (more on this in Section 5). In a setting in
which labor tasks are assumed to be complements in production (as we assume in GATE,
see Section 5) a potentially significant determinant of the macroeconomic impacts of AI
automation will be given by the extent to which the economy is “bottlenecked” by the
non-automated tasks, in which effective labor supply can be expected to increase at a
much slower rate than in automated tasks.

In turn, the strength of this bottlenecking phenomenon depends on two key factors. One
is the elasticity of substitution between labor tasks. The lower this parameter, the less
substitutability there is between tasks and the stronger the bottleneck effect exerted
by non-automated tasks is. The second key determinant is the extent to which labor
can quickly reallocate from automated to non-automated tasks. Intuitively, when labor
reallocates quickly to non-automated tasks this pushes up effective labor supply for these
tasks and weakens their bottlenecking effect on overall output. By contrast, if labor is
sluggish to reallocate to non-automated tasks this tend to amplify the break on overall
economic growth exerted by the remaining non-automated tasks. It is this process of
labor reallocation that is the key focus of this section.

We model the process of labor reallocation in response to AI automation in a simplified
way, by considering two polar extreme cases.17 In the first case, which is the default
setting of our model playground, we assume human labor can be seamlessly reallocated
across tasks (and hence from automated to non-automated tasks). Hence at each point in
time, the social planner is free to reallocate the entirety of the human labor endowment
across the (ever-decreasing) set of non-automated tasks, thus increasing effective human
labor supply for each of these tasks. Formally in this specification, we only need to keep
track of one state variable, the labor force, whose law of motion is given by

Lptq “ Lp0qegLt (17)

The frictionless reallocation specification is one in which the strength of the bottlenecks
generated by the non-automated tasks is relatively weak and could thus present a relatively
aggressive estimate of the pace of the economic impact of AI.

In the polar opposite case, we impose the assumption of no labor reallocation in response
to AI automation. In effect, workers are assumed to be “born” with human capital that

17In subsequent work, we plan to extend the framework here to allow for more realistic retraining and
reallocation of workers
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is specific to a single task, and they cannot be reallocated to any other task if their
task is automated. In other words the number of human workers engaged in each task
is exogenous and given by the initial conditions of the model and the exogenous rate of
population growth. Formally we have a law of motion for each task:

Liptq “ Lip0qegLt (18)

However, given that we assume that tasks enter symmetrically in the production function,
tasks start with equal labor endowments and the labor supply for each task exogenously
grows at the same rate (the overall population growth rate), in the solver keeping track of
only one state variable (the total population) will be sufficient. The no reallocation case
embeds an extremely conservative assumption (i.e. the bottlenecks from non-automated
tasks are set at their maximum). This should allow GATE users to explore the worst
case scenario from the perspective of labor reallocation. In future releases of GATE we
envision allowing for intermediate cases of labor reallocation frictions (e.g. cases with
incomplete labor reallocation in response to AI automation).18

5 The Macroeconomics Module: Translating Automa-
tion into Economic Output

We complete the description of the model by outlining its final module: the macroeco-
nomic module. This module specifies two key elements of the model:

1. The economy’s production technology, which links labor tasks, as well as other
production inputs to output. This element is key in tracking the impact of AI
automation on output.

2. The decision problem of the social planner, that drives the path of investment in
compute, hardware R&D, software R&D and investment in non-compute capital,
as well as the optimal allocation of effective compute across its different uses. This
element clarifies how the levels of output and the incentives faced by the representa-
tive agent feed-back into investment in AI and non-AI inputs, thus driving further
advances in AI capabilities.

Our exposition in this section is split into two parts. In the first, we outline the basic
setup of GATE’s macroeconomic module. In the second, on account of the complexity of
the model, we provide a review of the update rules affecting all of the model’s key state
variables.

18Note that allowing for such intermediate cases significantly complicates the decision problem of the
social planner, as the labor allocation decisions and the AI investment decisions become dynamically
interdependent.
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5.1 Basic Setup

Social planner’s problem For conceptual and computational simplicity, GATE is set
up as a social planner’s problem, which provides a benchmark of the potential evolu-
tion of the economy under minimal market frictions and distortions.19 Perhaps the most
straightforward way to think of our macroeconomic setting is as describing a social plan-
ner’s problem in an otherwise standard Ramsey-Cass-Koopmans setting that incorporates
AI-driven automation.

The social planner chooses:

1. a sequence of allocations of output (i.e. one allocation at each point in time for
an indefinite time horizon) into consumption, investment in compute hardware,
investment in hardware R&D, investment in software R&D and investment in non-
compute physical capital

2. the fraction of tasks to be automated, and a sequence of allocations of effective
compute (one allocation at each point in time for an indefinite horizon) across
training compute and runtime compute used for the delivery of each automated
task.

3. a sequence of allocations of the available human labor across tasks

to maximize the net present value of intertemporal utility for a representative household
given by:

max
txtu

ż 8

t“0
e´pβ´gLqt cptq1´η ´ 1

1 ´ η
dt, (19)

where cptq is consumption at time t, txtu is the vector of choice variables at the social
planner’s disposal, β is a time discount rate parameter and η is the coefficient of relative
risk aversion. As usual, taking η “ 1 corresponds to choosing log utility.

The choice variable vector txtu “ tcptq, IQptq, IRD
H ptq, IRD

S ptq, IKptq, Dptq, CI,iptq, Liptqu

contains the following variables: cptq - consumption, IQptq - investment in compute hard-
ware, IRD

H ptq - investment in hardware R&D, IRD
S ptq - investment in software R&D, IKptq -

investment in non-compute physical capital, Dptq - (effective) compute spent on training,
CI,iptq effective compute spent on runtime compute for automating task i, Liptq - human
workers allocated to task i .

When solving the welfare maximization outlined problem above, the social planner faces
19Beyond this benchmarks, more realistic simulations may be run either by imposing constraints/

introducing wedges into the social planner’s problem, as we do in Section 6 or by explicitly modeling
market structures in key markets and solving the market allocation problem. We plan to pursue both of
these areas in subsequent work.
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the following set of resource constraints:

Liptq, CI,iptq, IQptq, IRD
H ptq, IRD

S ptq, IKptq, Dptq ě 0 (20)
CI,iptq “ 0 for i ą fptq (21)
ż 1

0
Liptq di “ Lptq (22)

Dptq `

ż 1

0
CI,iptq ď Cptq (23)

Lptqcptq ` IQptq ` IRD
H ptq ` IRD

S ptq ` IKptq ď Y ptq (24)

where Cptq is total endowment of effective compute at time t, Lptq is the total available
human labor at time t, fptq is the fraction of automated tasks at time t and Y ptq is total
output. Intuitively, at each point in time, the social planner takes the state variables as
given20, and chooses the allocation of compute across training and runtime compute, the
allocation of runtime compute to automated tasks, and the allocation of labor to tasks
in order to maximize output. Conditional on period-by-period output maximization, the
social planner faces an otherwise standard dynamic macro problem: allocating output
between consumption and investment. The only difference between our setting and plain
vanilla settings is that the planner faces a richer menu of investment options, being able
to invest not only in the accumulation of physical capital but also in the accumulation of
compute, hardware R&D and software R&D.

Technology We adopt a slightly modified version of a standard neoclassical production
function to model the production side of the economy, that allows us to incorporate
AI-driven automation into the analysis. Our key aim is to capture the effects of the
gradual automation of labor tasks by AI systems (i.e. the gradual substitution of human
labor by AI systems across an increasing range of tasks) while allowing for production
bottlenecks generated by tasks that remain unautomated. Specifically, we model output
the production process via the Cobb-Douglas technology:

Y ptq “ AptqT ptq1´α´µKptqαF ptqµ, where α P p0, 1q. (25)

where, Y ptq represents total output at time t, Aptq denotes the exogenous stock of tech-
nology or total factor productivity (TFP) at time t, T ptq represents a composite of labor
tasks (further described below), Kptq represents the stock of physical capital at time t,
while F ptq represents some non-accumulable factor that is considered to be in fixed supply
(this can be thought of as land or natural resources). The parameter α determines the out-
put elasticity of capital, while µ determines the output elasticity of the non-accumulable

20The list of state variables and their update rules are reviewed in Section 5.2
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factor. The somewhat non-standard factor of production F is added to our framework to
allow users to specify a role for non-accumulable factors of production even in advanced
stages of automation. In departure from standard macroeconomic models we do not model
TFP growth (i.e. we assume Aptq is constant) as the model is focused on the role effects
of AI automation on the extensive and intensive margins. This issue is discussed further
in Section 8.

The key departure from standard production models is the introduction of T ptq, which
represents a composite of labor tasks and can be thought of as the stock of effective labor
input. This term includes the capacity of the economy to perform labor tasks, that when
combined with other inputs (e.g. accumulable and non-accumulable capital) result in the
production of final output. Importantly, this tasks composite captures the tasks produced
at any one time by both human labor and “digital workers”, i.e., AI systems that can
perform tasks traditionally done by humans.

The model assumes that there is a fixed (we assume unit measure) continuum of tasks
in the economy and that the effective aggregate labor input T ptq is a composite measure
of these labor tasks. The aggregation is performed using a constant elasticity of substi-
tution (CES) function, which allows for some degree of substitutability between tasks in
production. The CES aggregator is assumed to have constant returns to scale, meaning
that doubling all inputs leads to a doubling of output:

T ptq “

ˆ
ż 1

0
Tiptq

ρ di

˙1{ρ

, where ρ P p´8, 0q. (26)

where Tiptq denotes the amount of task i completed at time t and ρ “ σ´1
σ

is a substi-
tution parameter (note: σ represents the elasticity of substitution between tasks). As
we are focused on modeling production bottlenecks we restrict attention to values of the
substitution parameter (namely ρ P p´8, 0q) where tasks are assumed to be complements
in production, and hence limits to the scale-up of non-automated tasks place significant
limits on the expansion of the economy.

In turn, the amount of each task i being performed at time t, Tiptq, will be determined by
the number of human and digital workers allocated to the task. Task inputs will hence
be given by:

Tiptq “

$

&

%

Liptq ` Niptq, if i ď fptq

Liptq, otherwise
(27)

where Li, Ni are the human and AI labor allocations to task i (Niptq is given by equation
(14) and depends on the planner’s allocation of runtime compute across tasks), and fptq

is the fraction of tasks automated at time t. As explained at length in Section 4, the
process of automation is the result of the gradual training and deployment of better AI
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systems, which results in both a higher fraction of tasks being automated and a larger
number of “digital workers” being brought to bear to deliver each automated task.

Putting the prior two equations together, the process of producing final goods can be
expressed as follows:

Y ptq “ Aptq

ˆ
ż fptq

0
pLiptq ` Niptqq

ρ di
looooooooooooomooooooooooooon

automated tasks

`

ż 1

fptq

Liptq
ρ di

loooooomoooooon

Non-automated tasks

˙p1´α´µq{ρ

KptqαF ptqµ (28)

where the overall stock of human labor is assumed to grow exogenously at rate gL.21

As in standard growth models, investment is a key driver of growth dynamics. However, in
our setting the social planner faces a much richer investment decision than in standard set-
tings, as it is able to invest in compute, hardware R&D, software R&D and non-compute
physical capital. The first three investment categories yield a gradual increase in society’s
effective compute resources. In turn, increased effective compute resources permit the
training of more capable AI systems and the operation of more instances of these systems
(i.e. automate more tasks and deploy more “digital workers” per automated task). Intu-
itively, this process gradually turns labor from an non-accummulable to an accumulable
factor of production, which coupled with more standard physical capital accummulation
dynamics leads to gradual convergence to AK-style dynamics in our setting. Importantly,
“labor accumulation”22 is the key mechanism through which AI development affects out-
put in GATE, as we abstract away from any effects of AI development on TFP, which is
exogenously defined and kept constant over time.23

Investment frictions As with compute, we assume that the process of investing in
physical capital is affected by investment frictions. In line with our treatment of compute,
we assume that expanding the capital stock by some amount Ikptq has a larger cost IKptq

21The growth rate applies to the overall labor endowment or to the task level labor endowment,
depending on whether the perfect labor mobility or the no labor mobility scenarios are selected by
GATE users.

22We employ the labor accumulation metaphor for two reasons. Firstly for simplicity, as it is easier
to analyze than keeping track of additional factors of production and variable parameters governing the
substitutability of different factors of production. Secondly, to emphasize what we believe is a key distinc-
tion between AI and previous automation technologies: the ability of AI to eventually automate all labor
tasks currently performed by humans, leading to AI becoming a perfect substitute for all types of human
labor once full automation occurs. This approach is of course of a metaphor, as AI development depends
on processes of compute accumulation that are similar in nature to standard capital accumulation. Al-
ternative modelling strategies, for instance modelling AI development as increasing the substitutability
of human and AI labor at the level of each task would produce similar predictions.

23In other words, the present release of GATE does not allow for the AI automation of research or
other activities that affect output primarily via their effect on TFP
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given by:
IKptq “ Ikptq `

aKIkptq2

2Kptq
, (29)

where aK is an adjustment cost parameter that has dimensions of time (roughly corre-
sponding to over what time frame we can double the capital stock without running into
serious adjustment costs), IKptq is actual investment into capital at time t, and Ikptq is
the effective investment after incorporating the adjustment cost. The implied update rule
for the capital stock is then given by:

9Kptq “ Ikptq ´ δKKptq (30)

where δK is the depreciation rate for non-compute physical capital.

5.2 A Review of State Update Rules

In Table 2 we offer a review of the key state variables that collectively describe the
resources available to the economy at each point in time. GATE is a dynamic model
where the social planner makes optimal choices under resource constraints and takes into
account how choices will affect the resource endowments (and further the utility levels)
of future periods.

The state variables of the model include: labor Lptq, the physical capital stock Kptq,
compute hardware stock Qptq, hardware efficiency Hptq, software/ algorithmic efficiency
Sptq, the size of the largest training run CT ptq and the size of the overall stock of effective
compute Cptq. The evolution of each of these variables over time is described by a law
of motion or a state update rule. These state update rules have been described over the
course of the previous sections. However to provide an overview of the overall decision
problem faced by the social planner, we provide a summary of these state update rules in
the present section. Coupled with the descriptions of the planner’s problem and technol-
ogy in the previous section these should provide of a synthetic description of the decision
environment faced by the welfare maximizing social planner.

6 Model Add-ons: R&D Externalities and Uncer-
tainty

Beyond the three core modules described in sections 3 to 5, GATE embeds two optional
add-ons that can be turned on and off as needed by users. One of these add-ons allows the
model to take into account the role played by incomplete internalization of positive exter-
nalities emerging from R&D investments in shaping the plausible paths of AI automation;
while the other allows for uncertainty regarding the process of AI automation to play a
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Variable Update rule

Labor 9Lptq “ gL Lptq (Perfect reallocation)
9Liptq “ gL Liptq (No reallocation)

Capital stock 9Kptq “ Ikptq ´ δK Kptq

Compute stock 9Qptq “ Iqptq Hptq ´ δQ Qptq

Size largest training run 9CT ptq “ Dptq

Hardware efficiency 1
Hptq

dHptq

dt “ θHrHptqs´ϕH rIRD
H ptqsλH

Software efficiency 1
Sptq

dSptq

dt “ θSrSptqs´ϕS rIRD
S ptqsλS

Total effective compute 9Cptq “ Cptq
9Sptq

Sptq
´ δQ Cptq ` Iqptq Hptq Sptq

Table 2: Summary of update rules for state variables in the dynamic model. The labor
update rule depends on whether perfect reallocation (where labor moves freely across
tasks) or no reallocation (where workers remain in their initial task) is assumed. Laws
of motion for Total effective compute apply to the regime when heating bottlenecks are
sufficiently distant; otherwise, those need to be incorporated (see Section 3.5). Constraints
on hardware and software efficiency are omitted for clarity (see Section 3.5).

role in determining investment decisions related to AI development and deployment. In
what follows, we describe these two add-ons in greater detail.

6.1 Positive Externalities in R&D

As we have aimed to avoid taking firm stances on the market structures of key markets
affecting AI development, GATE has been set up as a social planner problem. We believe
that this set-up is useful in describing how the production possibilities of the economy
might expand as a result of optimal AI development, and may be a reasonable forecast
of how the future may unfold under the assumption that key markets are likely to be
competitive.

However, we believe there is one key feature of GATE that may result in our social planner
set-up generating a substantial upward bias in the trajectory of the economy: the key role
played by R&D investments and R&D spillovers in the path of AI capabilities and hence
the overall path of the economy. In our standard set-up outlined above, the social planner
fully internalizes the positive externalities associated with R&D investment when making
investment decisions. This can in principle lead to large differentials between the levels
of investment chosen by the planner and the levels of investment that we may expect to
see in a decentralized market where participants capture only a fraction of the benefits of
R&D. In turn, this could create a significant gap between the path of the economy under
our planner set-up and the path one might expect in a realistic market equilibrium.

38



To mitigate this issue, we have integrated an add-on into GATE that introduces an “R&D
wedge” between the social returns to R&D and the actual effectiveness of R&D invest-
ments.24 In essence, this module directly reduces the productivity of R&D investments,
simulating a scenario where only a fraction of the potential benefits are realized, simi-
lar to a decentralized market setting where positive spillovers from research typically go
uninternalized by individual firms.

Formally, the model add-on specifies a new parameter, ξ (the “R&D wedge”), that scales
down the perceived marginal returns to each type of R&D by modifying the investment
terms. Concretely, if ξ ą 1, the planner sees only IRD

H ptq{ξ and IRD
S ptq{ξ of the true

impact of investing in hardware or software. As a result, the marginal effects of R&D
investments om hardware and software efficiency growth rates are given by

BgH

BIRD
H

“ θH λH rHptqs
´ϕH

ˆ

IRD
H ptq

ξ

˙λH ´1

, (31)

BgS

BIRD
S

“ θS λS rSptqs
´ϕS

ˆ

IRD
S ptq

ξ

˙λS´1

, (32)

where gH and gS denote the growth rates of hardware and software efficiency respectively.
Lowering the perceived returns to R&D in this manner induces systematically lower R&D
investments, thereby producing a downward shift in the paths of Hptq and Sptq in GATE
simulations.25

6.2 Uncertainty About AI Automation

Another drawback of the baseline specification of GATE is that we have not allowed for
any uncertainty affecting the mapping between AI system technical characteristics and
the set of tasks that the system is able to perform. In other words, we have assumed
that the social planner is omniscient about the path of AI labor automation. When this
assumption is relaxed, uncertainty about the relationship between compute investment
and automation capabilities can significantly alter investment decisions and economic
trajectories. In such conditions, uncertainty about future automation capabilities can lead
to more cautious investment decisions, thereby depressing the overall level of investment
in AI.

To address this limitation, we incorporate an uncertainty add-on to the model that al-
lows users to run simulations under a variety of uncertainty scenarios affecting the AI
automation process.

24Note that this same wedge applies to both hardware and software R&D.
25It is important to note that we assume that there is no learning regarding R&D externalities when

the externality module is activated. The planner is essentially assumed to solve the model once and for
all under the incorrect beliefs regarding the returns to R&D and then to myopically implement that plan
even as the returns to R&D are revealed to be higher than expected.
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When the add-on is activated, the social planner is modeled as being uncertain about
the path of AI automation and having beliefs about potential future automation paths.
Formally, the social planner’s beliefs about the amount of effective compute required for
any given level of task automation are represented by a discrete probability distribution
over a (finite) family of automation functions of the type described in equation (13). Let
F “ tf1, f2, . . . , fNF u be a set of automation functions Rě0 Ñ r0, 1s mapping effective
training compute (measured in units of eFLOP) to a fraction of economic tasks that can be
automated using a model with that amount of training compute. The belief distribution
G : F Ñ r0, 1s assigns a probability to each fi P F , such that

řNF
i“1 Gpfiq “ 1.

We restrict the set of automation functions that can be in the support of the planner’s
beliefs to automation functions of the type:26

fipCT `ιptqq “

$

’

’

’

&

’

’

’

%

finit, if CT `ιptq ď T
10∆FLOP

finit ` p1 ´ finitq
log CT `ιptq´log T

10∆FLOP
log T ´log T

10∆FLOP
, if T

10∆FLOP ă CT `ιptq ď f̄´1pζiq

ζi ď 1, if CT `ιptq ą f̄´1pζiq

(33)
where f̄´1 is the inverse of the “true” automation function that allows for full automation
and is specified exactly by equation (13), i.e it is the same as the automation function
specified in the deterministic case. Thus to make use of the uncertainty add-on of GATE
users need to specify:

• The number of functions to allow in the support of the beliefs of the social planner,
i.e. |F |.

• For each automation function, the maximum automation parameter ζi that deter-
mines the highest feasible fraction of tasks automatable with that function.

• One function that allows for full automation must be included and fully specified in
F .

Intuitively, the uncertainty add-on allows users to set social planner beliefs over a family
of automation functions that are observationally equivalent up to a certain point in the
unfolding of automation (all functions in the family have the same shape up to a point, and
then the “incorrect” ones taper off before full automation is achieved). As the automation

26Because we are primarily interested in the economic effects of the transition to AGI, we preserve the
assumption that the “true” automation function eventually achieves full automation. Given this choice,
any other candidate function that deviates too soon would be immediately ruled out by the data, so
we only admit alternative functions that are observationally equivalent initially but then plateau below
full automation. We also include exactly one function that allows for full automation, because additional
piecewise functions also reaching 100% automation would soon receive probability 0 if they departed from
the true shape.
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process unfolds the social planner gradually learns the “correct” automation function that
allows for full automation. This is illustrated in figure 4.

Given the set of beliefs set by users as described above, at each point in time the social
planner makes choices so as to maximize the expected net present value of utility flows
accruing to the representative household conditional on the planner’s beliefs, and taking
into account the future path of the planner’s beliefs under each scenario. Formally the
planner solves:

max
xt

NF
ÿ

i“1
Gpfiq ¨ Upxt, fiq (34)

where xt represents the choice variables and Upxt, fiq is the net present value of household
utility achieved in the scenario with automation function fi when the choices of the social
planner are represented by xt.

As before, txtu is given by txtu “ tcptq, IQptq, IRD
H ptq, IRD

S ptq, IKptq, Dptq, CI,iptq, Liptqu

Current observation Admissible path Inadmissible path Full automation requirement

100% of tasks automated

75

50

25

0

Total compute

100% of tasks automated

75

50

25

0

Total compute

Figure 4: Belief updating after an observed compute-automation outcome. Solid lines
represent admissible paths that remain consistent with the observation (black dot), while
dashed lines are invalidated paths ruled out by the data. The left panel shows a larger
reduction in uncertainty with more paths eliminated, while the right panel shows fewer
paths ruled out, indicating a narrower range of uncertainty.

A key element of the automation uncertainty add-on is modeling the process of belief
updating by the social planner along the AI automation path. These beliefs are assumed
to be updated as follows:

The probability distribution over automation functions is updated based on observed
compute levels and the observed fraction of tasks automated. Let Ĉ be the observed
compute level and f̂ be the observed fraction of tasks automated at this compute level.

The update mechanism then operates as follows: suppose that f̄ P F is the true function
mapping compute to fraction of automated tasks in a particular run. Suppose further that
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at a particular time t, the largest model that has been trained has a training compute of
CT . In this case, at time t the updated belief distribution Gt of the planner is supported
on the set

Ft “ tf P F : fpCT q “ f̄pCT q for all CT ď CT ptqu (35)

and is obtained by conditioning down the original belief distribution G to this set as
follows:

Gtpfiq “

$

&

%

Gpfiq
ř

fj PFt
Gpfjq

if fi P Ft,

0 if fi R Ft.
(36)

In implementing this updating process, the model tracks and maintains distinct decision
paths for each set of automation functions that remain consistent with observed data,
allowing the planner to optimize decisions conditional on the current information set.

Intuitively, when the uncertainty add-on is activated, the social planner re-optimizes its
vector of choice variables as more and more information is revealed about the underlying
empirical automation function. Moreover, the uncertainty module allows the model to
capture two drivers of AI automation missing in the baseline model. These drivers include

1. risk aversion, which in the presence of uncertainty can lead to a lower/ more delayed
path of investment

2. the role of uncertainty in the decision-maker beliefs, which can push back the path
of investment relative to the full information case

By incorporating these mechanisms, the uncertainty add-on provides a more realistic
framework for analyzing how imperfect information can reshape the pace, scale, and
timing of AI-driven automation.

7 Model Functionality

The main objective of GATE is to enable users to run simulations of the global economy
under a broad spectrum of potential AI automation scenarios. By offering a set of config-
urable parameters (detailed in Appendix D), the model grants users substantial freedom
to tailor assumptions about AI development—ranging from hardware and software R&D
trajectories to capital adjustment frictions and labor reallocation rules. This flexibility
makes it possible to study plausible paths of AI-driven growth and their downstream eco-
nomic effects under diverse configurations. Moreover, GATE delivers its results in real
time, leveraging an efficient solution algorithm (described in Appendix C), and presents
these forecasts in an accessible, user-friendly format.

In the remainder of this section, we first describe the model’s key output variables, showing
how GATE tracks both standard macroeconomic aggregates and AI-specific development
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metrics. We then outline the sandbox’s principal features—such as real-time visualization
and scenario comparison—and conclude with concrete examples of AI trajectories that
can be explored.

Model Outputs GATE simulates the evolution of multiple endogenous variables over
time, covering both macroeconomic aggregates and AI-specific development metrics. Users
can visualize and export these outputs to analyze how different assumptions (e.g. capi-
tal adjustment frictions, R&D returns, labor reallocation) affect the trajectory of global
output, consumption, AI capabilities, and more. The key output categories include:

• Economic Indicators. These include Gross World Product Y ptq and its growth
rate, consumption levels cptq, and the composition of investment (in both capital
and AI-related inputs). The model also tracks the evolution of the capital stock
Kptq, enabling analysis of how traditional forms of capital accumulation interact
with AI-driven productivity gains.

• AI Development Metrics. Key outputs here comprise the size of the largest
training run CT ptq (i.e., how much compute is devoted to the most ambitious AI
model at each point in time) and the fraction of tasks that become automated fptq.

• Resource Allocation Variables. GATE simulates how effective compute Cptq

is allocated between training and inference across tasks, as well as how investment
flows are split among hardware, software R&D, and non-compute capital. For in-
stance, at each timestep users can see how much of the economy’s output is devoted
to building new compute hardware Qptq, or funding R&D aimed at pushing forward
the efficiency frontiers of hardware Hptq and software Sptq.

• Technology Trends. Finally, the model reports the paths of hardware efficiency
Hptq and software (algorithmic) efficiency Sptq over time. As these improve through
R&D, the total effective compute becomes more abundant, driving faster automa-
tion.

The model playground is initialized with a set of pre-specified default parameters (outlined
and justified in Appendix D). Users are able to either manually modify parameters within
their permissible ranges ( outlined in Appendix D) or select from pre-specified bundles of
parameters or scenarios (e.g., median, 5th or 95th percentile values for parameters based
on estimates from the existing empirical literature).

In response to user parameter choices, the model playground produces real-time visual-
izations of key model output variables, with graphs and charts updating dynamically to
parameter changes. Moreover, to enhance functionality, the playground includes an ad-
ditional feature, namely the possibility to engage in scenario comparisons. The modeling
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Figure 5: Illustrative outputs from GATE’s integrated assessment framework. Each
subplot shows how key macroeconomic and AI-specific variables evolve under different
assumptions. For instance, GATE projects the scale of the largest AI training runs (a), the
balance of compute-related vs. general capital investment (b–c), and how rising automation
(d–f) drives consumption growth (g) and reallocates compute resources (h) and R&D (i).
Together, these panels highlight how changes in AI development—e.g. hardware/software
R&D or labor reallocation—shape economic outcomes and further AI progress.

tool allows users to save and compare the outputs of multiple simulation runs, enabling
side-by-side evaluations of distinct assumptions or parameter values.

Model functionality: Some AI development trajectories that can be explored
With GATE’s integrated framework in place, users can investigate a broad array of pos-
sible trajectories for AI development by systematically varying the model’s economic
and technological parameters. In doing so, they can glean insights about how the inter-
play between R&D investments, hardware and software progress, task automation, and
macroeconomic forces shapes AI’s transformative impact on global output and growth.
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Below are examples of particularly salient AI development paths one can explore:

• Rapid vs. Gradual Automation. The speed of automation is primarily governed
by the “FLOP gap” (∆FLOP) parameter of the task-automation function. Lowering
∆FLOP (and/or adjusting the total compute T required for full automation) can
yield a scenario in which AI takes on a large fraction of tasks quickly once a thresh-
old is crossed, while larger ∆FLOP requires much more compute before automation
truly accelerates. This framing helps clarify whether advanced AI is likely to arrive
abruptly or remain a gradual process over many decades.

• Varying Rates of Hardware and Software Efficiency Progress. GATE cap-
tures both hardware (e.g., GPU chips) and software (algorithmic) advances, driven
by their respective R&D processes. Users can alter the returns to R&D (parameters
λH , λS) and the “fishing-out” exponents pϕH , ϕSq, as well as imposing or relaxing
upper bounds on hardware and software efficiency (Hmax, Smax). This allows for
simulating everything from accelerated software progress to potential stagnation in
one dimension (say, hardware), revealing how bottlenecks in hardware vs. software
shape AI’s path.

• Different Levels of Investment in AI R&D. By changing macro-level parame-
ters such as the time discount rate (δ) or the representative agent’s risk aversion (η),
one can shift how aggressively the planner invests in AI-specific R&D. The optional
R&D wedge ξ further allows for exploring under- or over-investment in AI research
when market actors do not (or do) internalize knowledge spillovers. These scenar-
ios illuminate whether society invests “too little” and thus delays breakthroughs or
invests heavily up front in pursuit of accelerated automation gains.

• Potential Technological Bottlenecks or Breakthroughs. The model incor-
porates supply-chain and heat-dissipation constraints that limit the expansion of
compute (Q). Users can test cases where adjustment costs are severe (large expo-
nent β), restricting how quickly the compute stock can grow, or conversely simu-
late breakthrough fabrication technologies that flatten adjustment costs. In tan-
dem, modifying ρ (the substitution/complementarity of tasks) helps users gauge
whether partial automation quickly boosts output or remains bottlenecked by non-
automatable tasks. Taken together, these experiments provide insight into how
hardware constraints might bind as AI scales.

• Impact of Policy Interventions. GATE can incorporate a wide range of policy
scenarios. For instance, toggling the R&D externalities module (adjusting ξ) models
different degrees of subsidy or tax for AI-specific research. One can also apply
artificial “caps” on large training runs to mimic regulatory constraints on advanced
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AI or impose taxes on hardware acquisition to slow compute expansion. In this way,
researchers can see how strategic regulation or targeted subsidies alter the timeline
and extent of automation.

• Uncertainty over AI Progress. Finally, the uncertainty add-on allows for mul-
tiple possible mappings between compute and the fraction of tasks automated, each
with different probabilities. As the planner observes real-world outcomes (e.g. unex-
pected rapid automation of certain tasks), beliefs update and investment decisions
shift accordingly. This framework clarifies how “surprise” breakthroughs (or disap-
pointments) can reshape the allocation of resources to AI R&D, thus modifying the
subsequent paths of both AI capabilities and economic growth.

These potential trajectories illustrate the model’s flexibility in exploring how AI-driven au-
tomation might unfold under diverse assumptions, technological limits, and policy choices.

8 Limitations

While GATE represents a significant step toward integrated assessment modeling of AI’s
economic impacts, several important limitations warrant discussion. These limitations
fall into two broad categories: parametric uncertainty and structural simplifications. On
the parametric side, key model inputs like training compute requirements for automation,
compute stock adjustment costs, and R&D externality wedges remain highly uncertain.
These uncertainties reflect both the novelty of AI technology and limited empirical evi-
dence about scaling dynamics in compute-intensive industries. While one could conduct
sensitivity analyses across plausible parameter ranges, these analyses cannot fully address
deeper structural limitations in how the model represents AI development, technological
progress, and labor markets. Below, we detail the key structural limitations that may
constrain GATE’s ability to capture important real-world dynamics.

Lack of non-AI technological progress A significant limitation of the current speci-
fication is its handling of non-AI technological progress. Although the model does include
endogenous improvements in hardware and software efficiency, the macroeconomic module
keeps broader TFP exogenous and focuses exclusively on how AI affects output through
labor-task automation. This approach presents two difficulties. Firstly, on a conceptual
level, it precludes consideration of one of the mechanisms that has garnered most inter-
est in the academic discourse on AI and economic growth, namely the effect of AI on
general purpose R&D and productivity.27 Secondly, on a quantitative level, the omission

27For examples of work emphasizing these mechanisms see Aghion et al. (2018), Nordhaus (2021) and
Trammell and Korinek (2020).
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of this mechanism might lead to an excessively conservative estimate of the economic
implications of AI.

While endogenizing TFP growth could mitigate these concerns, it would also, under many
parameter values, introduce hyperbolic growth dynamics, which imply unbounded future
consumption and are thus challenging to analyze within our representative-household op-
timization framework. Moreover, such growth scenarios would likely require incorporating
additional constraints around specific planetary bounds like energy availability, heat dissi-
pation, and raw material scarcity to remain tractable. Given these complexities, we opted
for an exogenous TFP specification in this initial release, though future work might ex-
plore ways to capture AI-driven technological progress while maintaining computational
feasibility.

Stylized model of AI development via “effective compute” A further limita-
tion arises from reducing all algorithmic progress to a single “effective compute” dimen-
sion, which overlooks crucial differences between cost-lowering improvements and break-
throughs that open entirely new capabilities. For instance, techniques that reduce runtime
requirements may cut the compute needed for tasks already within reach, but not neces-
sarily widen the overall range of automatable work. By contrast, new model architectures
may tackle previously unattainable tasks even while yielding only modest cost efficiencies
for already automated tasks.

At very large scales, the distinction between serial and parallel computing becomes es-
pecially significant: Erdil and Schneider-Joseph (2024) show that fundamental data-
movement and latency constraints can severely limit training beyond about 1028–1031

FLOP. A single “effective compute” metric cannot capture the fact that some steps re-
main serially constrained—no amount of parallel hardware will accelerate them—whereas
others scale more smoothly with increased FLOP.

As a result, key automation thresholds could arrive earlier or later than our single-index
approach suggests, potentially distorting both timeline estimates and investment deci-
sions. The relationship between efficiency improvements and capability-expanding break-
throughs remains poorly understood, making it infeasible to model them as separate
dimensions of progress. Further empirical research on how scale, parallelism, and model
architectures interact is needed to represent these complexities more accurately.

Failure to incorporate data production The AI development module abstracts
away from important non-compute inputs, particularly data availability, cost, and quality.
While the compute-based framework captures many key dynamics of AI development, it
omits potentially significant constraints around data collection, quantity, and curation
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requirements. This simplification could lead to overly optimistic automation timelines by
not accounting for cases where data scarcity or quality issues become binding constraints,
even with abundant compute resources—a concern that appears increasingly relevant
given recent projections about the exhaustion of public training data (Villalobos et al.,
2022). This concern may be especially salient for complex tasks that rely on real-world
embodiment or physical experimentation, where data can be especially costly to gather.
Future iterations of the model could benefit from explicitly incorporating data as a com-
plementary input alongside compute, though this would inevitably introduce additional
complexity into modeling the interplay between data requirements, collection costs, and
AI automation capabilities.

Stylized labor reallocation assumptions An important limitation of our current
specification is its stylized treatment of labor reallocation in response to automation.
The model considers only two extremes—perfect reallocation where workers seamlessly
transition to non-automated tasks, or complete displacement where automated workers
permanently exit the labor force—while omitting crucial intermediate dynamics involving
retraining periods, search frictions, and geographic mobility constraints.

Under perfect reallocation, we may underestimate short-term unemployment and skill
mismatches, whereas under complete displacement, we risk overstating the severity of
economic disruption and understating long-run flexibility. This simplification has ma-
terial implications for the model’s predictions: by omitting partial reallocation paths,
GATE may overlook temporary unemployment spells, skill-upgrading costs, or the grad-
ual movement of workers to alternative sectors. Extending the framework to incorporate
realistic labor market frictions, including explicit modeling of retraining dynamics, job
search processes, and wage adjustment mechanisms, would help capture more accurate
transition costs and enhance the model’s applicability for policy analysis.28

Omission of market structure and strategic behavior A significant limitation of
GATE’s current specification is its reliance on a social planner framework that abstracts
away from real-world market structures and strategic behavior among AI firms. This
simplification, while preserving computational tractability and precluding the need for a
detailed investigation of plausible market structures, omits crucial mechanisms including

28Labor market frictions have been the object of a vast literature in economics. Two particularly
relevant strands of literature are the search and matching literature (Diamond (1982a), Diamond (1982b),
Mortensen (1970a), Mortensen (1970b), Mortensen and Pissarides (1994), Pissarides (1979)) and the
literature analyzing labor market reallocation in response to large shocks (Dix-Carneiro and Kovak (2017),
Kovak and Morrow (2025), Autor et al. (2013), Autor et al. (2015), Acemoglu et al. (2014)). This
latter literature typically finds evidence for substantial frictions affecting labor reallocation across sectors,
occupations and regions.
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competitive investment dynamics, market power effects, and strategic timing of capability
deployment.

The social planner approach may mischaracterize the pace and pattern of AI progress by
assuming coordinated, welfare-maximizing investments, rather than reflecting the decen-
tralized environment in which AI labs compete. For example, the model cannot capture
how market concentration might affect AI firms’ decisions to withhold or accelerate ca-
pability deployment. Moreover, our current implementation does not allow us to model
quantities of interest such as prices, wages and interest rates, that could also serve efforts
to empirically scrutinize the model. Future iterations of GATE could incorporate an ex-
plicit market structure layer modeling oligopolistic competition in AI development and
price formation mechanisms, though this would require careful balance between added
realism and computational feasibility.

Stylized and static labor task space GATE employs a simple modeling of the labor
task space: a unit measure of tasks that are only differentiated along one dimension,
namely their complexity and hence their automatability by AI systems. This involves
abstracting away from at least two layers of complexity that have been widely discussed
in the existing literature.

Firstly, we omit other dimensions of task heterogeneity that have been documented as
important by previous work, such as the distinction between manual and cognitive tasks
or that between routine and non-routine tasks.29 The distinction of between cognitive and
manual tasks is likely to be particularly consequential given the (to date) slower progress
of AI systems in the physical realm and the plausible different production function for
“digital workers” in the physical domain. Allowing for these additional dimensions of
heterogeneity across labor tasks would be attractive, but would be computationally costly
and highly speculative given the absence of high quality measurements for the relative
economic value of physical tasks and of the key parameters of the production technologies
applicable to robotics.

Secondly, we assume that the labor task space is static and exogenous, which precludes
the possibility that the space of labor itself changes along the automation process, as well
as the possibility that the direction of automation might be influenced by economic con-
siderations (such as labor market outcomes or the choices of economic decisionmakers).30

Evidence in support of this dynamic joint determination of automation and labor market
outcomes is provided by a recent and rapidly growing literature on directed technological

29See Autor et al. (2003).
30Our framework allows for the timing but not the order of automation to respond to economic incen-

tives.
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change (DTC).31 Moreover, these omitted features of the space of labor tasks underpin
some of the recent debates concerning the impacts of AI on labor markets, where drawing
on the historical record some commentators expect the advent of novel tasks for human
workers to preclude the possibilities of full automation and of large scale technological
unemployment. Given the computational complexities involved in adding these features
to GATE, and the model’s relatively limited interest in labor markets, we have omitted
these factors from the current release. We envision embedding some of these complexities
in future releases of the model.

Other bottlenecks The current release of GATE already includes several sources of
bottlenecks that could dampen the effects of AI automation on economic growth. These
include complementarities between labor tasks (and hence between automated and non-
automated tasks) and allowing for the presence of long-run non-accumulable factors in
the aggregate production function. However, GATE does not include the exhaustive
list of potential bottlenecks limiting the growth implications of AI put forward in the
literature.32 In particular, our modelling of the complementarities between human and
AI labor is quite simplified, being captured by a single and constant over time parameter,
ρ. By contrast, the patterns of complementarity and substitutability between AI and
human labor are likely to be much richer and evolve over time.33

While including all of the potential bottlenecks discussed in our framework would be im-
practical, we envision the inclusion of some of the most salient ones in future releases of
GATE. These may include the role played by regulations that could restrict the automa-
tion of certain occupations and their associated labor tasks (e.g. lawyers, judges) as well
as adding additional complementarities on both the production and the consumption side
of the economy (e.g. complementarities between labor, capital and non-accumulable fac-
tors of production, complementarities between commodities whose production processes
are easier or harder to automate etc.) that may augment the severity of Baumol effects
in our setting.

9 Concluding Remarks

This work is an attempt to contribute to the debate surrounding the economic impact of
AI by putting forward a comprehensive integrated assessment model of AI automation.

31Some of the contributions to the literature on automation and directed technical change (DTC)
include Acemoglu (2002a), Acemoglu (2002b) and Acemoglu and Restrepo (2019).

32For a comprehensive discussion of the potential bottlenecks to economic growth in an advanced AI
regime see Besiroglu and Erdil (2023) and Vollrath (2023).

33For a more detailed discussion of this issue see Ide and Talamas (2025).
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We hope that this release will help guide and structure the debate about the implications
of advanced AI and bring together the AI and economics communities.

While significant effort has been invested in including some of the key drivers of AI
development and AI driven automation into GATE, wide scope for further work remains.
In what follows, we outline what are in our view some of the key areas for future work. We
expect to continue exploring some of these research directions in the future, but we would
like to encourage the research communities in economics and AI to engage and further
investigate this potentially highly consequential cluster of topics at the intersection of AI
and economics.

We see at least four key directions for future work. Firstly, and perhaps of most interest
for the economics community, it would be interesting to analyze market equilibrium coun-
terparts to the planner setting studied in GATE, under alternative assumptions regarding
market structures. This would allow us to study the expected evolution of key market
prices, particularly wages and interest rates along the path of automation, as well as test
the robustness of GATE’s predictions regarding growth and investment. The ability to
study prices would be particularly attractive, due to the forward-looking attributes of
market prices that can allow for earlier model benchmarking and validation.

Secondly, and perhaps of most interest for the AI community, it would be helpful to ex-
plicitly model data requirements and data availability over time as an additional factor
limiting the practical real-world applications of AI in the stage before capabilities reach
human-level performance. This type of extension could help evaluate whether data con-
straints are likely to noticeably slow the pace of automation relative to current model
predictions.

Third, it would be useful to incorporate endogenous idea production outside of AI-specific
hardware and software technologies into the analysis. This would help bring together the
“factor accumulation” and the “technological progress acceleration” mechanisms through
which AI automation is expected to transform the economy, as well as help refine the
model’s predictions about growth in the post-automation regime. In particular, this
extension would allow us to assess the robustness of a frequent prediction of models
focused solely on “factor accumulation,” namely a plateau in growth in the post-full-
automation regime.

Fourth, it would be valuable to treat a broader class of structural constraints — not fully
captured by our existing adjustment-cost specification — that might limit the scale-up
of AI compute. Energy requirements and electricity provision are one salient example,
but other factors—such as advanced chip manufacturing capacity and infrastructure bot-
tlenecks—could equally constrain compute growth in ways not fully captured by our
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super-linear investment costs. Incorporating these resource bottlenecks explicitly could
substantially affect both the timing and degree of AI deployment, and remains a promising
avenue for future extensions of GATE.

Finally, we encourage researchers to systematically explore GATE by adjusting parameter
settings, policy interventions, and assumptions about AI development. Through scenario
analyses, parameter sweeps, and sensitivity testing, one can examine how the model’s pre-
dictions shift under varied conditions—such as calibrating parameters to match current
compute spending or exploring the implications of different labor-market frictions. In-
corporating new empirical insights into key parameters and refining the model’s modules
can further stress-test and enrich GATE, sharpening our ability to forecast and navigate
AI’s impacts.

Beyond GATE and its natural extensions, we envision several additional areas in the
Economics of AI space that we would be interested in contributing to and would encourage
other interested researchers to consider as well. First of all, we observe a significant gap
in the understanding of AI technology in the economics community. To bridge this gap
we envision continuing our efforts to publish technical notes that describe key features of
the AI engineering process in accessible terms and propose simple modeling techniques
that allow these features to be incorporated into workhorse economic models.

Second, there is still very limited empirical evidence to anchor the calibration of many
key parameters (e.g. R&D parameters, automation function parameters, degree of com-
plementarity/ substitutability between labor tasks etc) of models such as GATE or those
of similar efforts to model the future path of AI and its economic impacts. To address
this issue substantial additional empirical research is needed, as well as meta-studies that
pool available evidence to allow for the most accurate picture of the value of these key
parameters. We envision contributing to this area and encourage applied researchers to
consider prioritizing this area in their own work.

Finally, as in other areas of academic research, several valuable public goods are under-
provided in the Economics of AI space. These include the provision of a repository of
models analyzing the potential paths of AI automation and the economy, as well as bench-
marking exercises that compare the past performance and future predictions of existing
models in this area. We envision contributing to mitigating this shortfall in subsequent
work, but we expect substantial gaps to persist in the provision of this type of research
“infrastructure” and public goods for the foreseeable future.
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B A Basis for a Compute-Based Model of AI

The idea of forecasting AI capabilities based on computational power has a rich history.
Pioneers like IJ Good, Hans Moravec, and Ray Kurzweil predicted that matching human-
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level AI would require computational power equivalent to the human brain. This was a
bold claim, as it was conceivable that a cleverly designed algorithm could have achieved
general intelligence without massive computation. However, the success of modern deep
learning has partially validated these compute-based predictions.34

Compute-based models of AI forecasting were validated further by, among others, Kaplan
et al. (2020), when they introduced scaling laws to the machine learning literature. A
scaling law is a simple function that describes the performance of a machine learning sys-
tem, in this case large language models (LLMs), using only some macroscopic properties
of the system such as its parameter count and the number of examples it sees during
training. Initially intended for specific neural architectures, recent scaling laws, such as
Hoffmann et al. (2022), seem to provide a blueprint for training models that are challeng-
ing to surpass through architectural innovations at smaller scales. This lends support to
the compute-based paradigm of AI forecasting.

This perspective aligns with a broader lesson from the history of AI research, as articulated
by Sutton (2019):

The biggest lesson that can be read from 70 years of AI research is that general
methods that leverage computation are ultimately the most effective, and by a
large margin... Seeking an improvement that makes a difference in the shorter
term, researchers seek to leverage their human knowledge of the domain, but
the only thing that matters in the long run is the leveraging of computation.

Still, we also have evidence that algorithmic progress is possible, despite the difficulties
posed described by Sutton: every year, we are able to obtain better performance for a
given budget of computation and data. There is a small but growing literature on progress
in software and algorithms for common computer science problems (see Ho et al. (2024) for
a review). While the exact nature of this algorithmic progress is complex, we can take it
into account in an approximate way by introducing the notion of effective compute, which
is a measure of the computation done by a model adjusted for algorithmic efficiency. For
example, if a Boolean satisfiability problem solver algorithms have become 300-fold better
today relative to the 1990s, then for that specific problem, 1 unit of computation may be
said to be effectively “worth” 300 units of 1990s compute.35

34For example, Moravec (1976) estimated in 1976 that computer vision systems had 1.6 million times
less processing power than the human visual cortex. Given Moore’s law, bridging this 6-order-of-
magnitude gap was predicted to take around 40 years, putting impressive computer vision capabilities
on par with humans by 2016. This prediction appears remarkably accurate today, despite the limited
information available at the time.

35In fact, experiments by Fichte et al. (2020) suggest that modern SAT solvers achieve performance
improvements equivalent to reducing compute requirements by roughly 100 to 1,000 times compared to
solvers from the early 2000s, due to the developments of novel algorithms, such as Conflict-Driven Clause
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Prior work has sought to estimate the pace of algorithmic progress defined above for
AI specifically. Hernandez and Brown (2020) and Erdil and Besiroglu (2022) approach
this question in the context of a famous computer vision benchmark, ImageNet-1k, by
running experiments on older models and analyzing the results of old papers using sta-
tistical methods, respectively. Hernandez and Brown (2020) estimates a doubling time
of 16 months for effective compute, while Erdil and Besiroglu (2022) has a more uncer-
tain estimate that is centered around 9 months. Similarly, Ho et al. (2024) investigates
algorithmic progress for large language models, and finds that the compute required for
a certain level of performance halves roughly every 8 months. Despite variations in the
data and uncertainties in individual estimates, the overall evidence indicates that the
computational requirements for AI tasks tend to halve approximately every year due to
algorithmic improvements.

The concept of effective compute is, of course, a simplification. It neglects many important
features of algorithmic progress. To list a few:

• The idealization of effective compute neglects the distinction between serial and
parallel compute. When training a machine learning system, some calculations can
be parallelized, meaning we can simply use more GPUs to train the model if one
GPU proves insufficiently fast, while some cannot. Deep learning models themselves
are usually designed such that the model can be trained in a highly parallelized way,
but some non-trivial amount of serial compute is still required.36

• Algorithmic progress in machine learning may be more or less pronounced at smaller
or larger scales. For example, the LSTM architecture from the 1990s can perform
better than the now-dominant Transformer architecture from 2017 on some tasks
(Droppo and Elibol, 2021). A particular innovation might provide savings of only
two times when training a model with 105 parameters, but ten times when training
a model with 1015 parameters. This scale-dependent nature of progress is not cap-
tured by the simplified concept of “effective compute”, which reduces algorithmic
advancements to a single dimension.

• Algorithmic progress in AI may advance more rapidly in reducing computational
requirements for already-achieved capabilities than in expanding the frontier of AI
system capabilities. For instance, advancements in Knowledge Distillation tech-
niques (see Xu et al. (2024)) enable the replication of top model capabilities at
significantly reduced computational cost. However, these techniques contribute less

Learning.
36For instance, while the evaluation of gradients during gradient descent is highly parallelizable, ulti-

mately, it’s necessary to take gradient steps in a particular sequence, and this introduces an irreducible
amount of serial computation to the training process.
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to expanding the range of attainable AI capabilities. The “effective compute” con-
cept does not distinguish between these two types of advancement.

While we recognize these limitations, substantial evidence supports the significance of
algorithmic progress in AI development. Improvements in architectures, algorithms, and
application techniques have demonstrably enhanced AI capabilities. Moreover, the con-
cept of effective compute has proven valuable in AI research and development, as evidenced
by its adoption in strategic planning at major AI labs.37 Therefore, we also think that
the notion of effective compute is a sufficiently useful abstraction to warrant applying it.

C Solving The Model

In this section we present the solution algorithms employed to solve the model.

C.1 Solution Approach: Baseline Model

In this section we present a brief description of our solution approach for the model. How
do we find the (optimal) paths for the model’s key endogenous variables (i.e. output,
investment, extensive and intensive margin automation, the size of AI training runs etc.)
chosen by the welfare maximizing social planner? Our focus in this section is on the
solution procedure for the baseline model that excludes R&D externalities. The next
section presents the solution approach taken when R&D externalities add-on is activated.

The model is too complex to admit tractable closed-form solutions. However, since it is
deterministic, the model can be solved numerically by optimizing the value function of
the planner as a function of the vector of decisions that must be taken in the model.

We proceed to solving the model via a numerical procedure called gradient descent, which
can be used to find the maximum of a function, in our case the social planner’s value
function. Intuitively, this procedure works as follows: for a given vector of (user selected)
parameters and initial values of the models key state variables, the solution algorithm
begins with a guess of for the vector of endogenous variables (denoted txtu in Section 5.1)
and computes the planners value function. Then this choice is iteratively updated in the
direction of increasing the value function until a stopping condition is met and the final
updated guess of the vector of endogenous variables is outputted as the proposed model
solution.

To make the model amenable to the above solution procedure, we discretize the task
37For instance, Anthropic incorporates the notion of effective compute in their Responsible Scaling

Policies (Anthropic, 2023).
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space into 20 grid points38 and also discretize time at a resolution of 1 year. We note
that different time discretization schemes produce similar answers as long as the time
resolution is sufficiently high. We also choose a time planning horizon τplan over which we
aim to solve the planner’s optimization problem. This is typically set at 80 periods (or 80
years in our setting). Our model has five degrees of freedom in the decisions of the social
planner agent per time step. This number of degrees of freedom emerges from the fact
that we have 7 endogenous variables (output shares of consumption, hardware investment,
capital investment, hardware R&D investment, software R&D investment; as well as the
compute shares of training and inference respectively) subject to two constraints (the sum
of output shares needs to sum to 1 and the sum of the compute shares also needs to sum
to 1).

We solve the model by performing gradient descent over the vector of parameters that
define the investment, compute and labor allocation decisions. Specifically, in each time
period, the social planner in the model makes the following choices:

1. How to allocate total economic output between the five categories of consumption,
capital investment, compute investment, software R&D and hardware R&D?

2. How to allocate existing computing hardware between runtime compute and training
compute?

It is important to note that our solution algorithm does not need to specifically solve for
the optimal allocations of inference compute across automated tasks or of human labor
across non-automated tasks. This is because the optimal value of these variables are
deterministic functions (pinned down by first order conditions) of the choice variables
explicitly solved for by our solution algorithm.39

When solving the model over τplan time periods (we call this the “planning horizon”),
we choose a time horizon τoptim " τplan and simulate the model over this longer time
horizon (we call this longer time horizon τoptim the “optimization horizon”). We define
the planner’s value function over a choice variable vector with 5τoptim elements (5 degrees
of freedom for each of the τoptim periods of the social planner optimization horizon) and

38For the purposes of allocating digital workers across tasks we discretize task space into 20 grid points.
For the allocation of human workers and for solving the integral of the CES aggregator we discretize the
tasks space into 100 grid points.

39It is easy to show that the optimal allocation of human labor is uniform across non-automated tasks
for the case of frictionless labor allocation, and it is exogenous in the case without labor reallocation.
Also, combined with the model’s state variables and parameters, any choice of the share of compute
allocated to runtime compute fully pins down the allocation of runtime compute across automated tasks.
This is because the size of the largest training run at each point in time fully pins down the relative price
(in terms of effective compute) of digital workers across tasks. This, coupled with the CES aggregator for
tasks, fully specifies the efficient allocation of the total runtime compute budget across automated tasks.
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apply gradient descent over this vector of choice variables. In other words, we continu-
ously update the decision vector to increase the social planner’s value function V . The
optimization procedure terminates when the algorithms stopping conditions are met (e.g.
a certain number of iterations has been exceeded, or the gradient norm has fallen below a
certain tolerance threshold). At this point the program outputs the realization of the rep-
resentative agent’s value function as well as the optimal choices of each of the endogenous
variables over the planning horizon τplan. Formally our optimization algorithm solves for

max V “

τoptim
ÿ

t“1
e´pβ´gLqpt´1q c1´η

t ´ 1
1 ´ η

In our default implementation, one time period in the model corresponds to one year,
but this can be modified by appropriately rescaling the parameters in line with the time
or frequency dimensions. Moreover, picking some optimization horizon τoptim " τplan is
necessary to cut off the sum defining the value function at a finite threshold because V

can’t be computed as an infinite sum. In practice, when τplan is on the order of e.g. 80
years, a value for H on the order τoptim “ 2τplan “ 160 years works well.40

[If there is anything we do explicitly to avoid the problem of getting stuck at a local
optimum it might be helpful to detail that here]

[In a conversation with Ege he mentioned that the problem we have here is of a slighlty
different nature than the one typically faced by economists, calling for a different model
solving approach. having a bit of that discussion here might be nice, but it is not essential]

C.2 Solution approach: R&D externalities add-on

Activating the R&D externalities add-on results in some changes to the approach used to
solve the model and deliver simulation output.

Intuitively, when the R&D externalities module is activated, the social planner is operating
with an incorrect model of the world: it underestimates the returns to R&D investments
by a factor ξ, period by period, with no updating.

To solve the model under these circumstances we employ a two step procedure. We first
solve the model under the wrong specifications of the software and hardware efficiency
laws of motion, and determine the values of the choice variables that would be chosen by
a social planner under this wrong model for the entire duration of the simulation. In a
second step we simulate the path of the economy keeping the vector of choice variables
fixed at the solution found in the optimization, but outputting the actual path of the

40We have experimented with other optimization horizons, and we found that beyond τoptim “ 2ˆτplan

the changes in the model solutions were negligible.

66



economy given the choices of the planner and the correct laws of motion for hardware and
software efficiency. This exercise can be thought of as a social planner being forced to set
and commit to a plan of action ex-ante while operating under a misspecified model of the
world (in this case a model of the world that is myopic of the true returns to R&D).

An alternative solution approach would be to allow the planner to re-solve the optimiza-
tion period by period. In this case, the myopic planner would be constantly surprised and
wish to change its plans every period. However, this approach would be computation-
ally significantly more expensive and has not been implemented for the current release of
GATE.

D Model inputs

GATE allows users to perform simulations by selecting a wide range of key economic
and technological parameters. The list of these parametes is presented in greater detail
below. For each parameter we specify their ranges and their default values in our model
sandbox.41

D.1 General economics parameters

Table 3: General Economics Parameters

Parameter (units) Range (default) Explanation

Initial GWP - Y p0q

(real USD/year)
105 trillion to 115
trillion (110 trillion)

Gross world product at the start of
simulations, i.e., the total economic value
produced globally in 2024.

Initial labor force
(perfect reallocation) -
Lp0q (no. of human
workers)

3.4 billion to 3.8 billion
(3.6 billion)

Total number of humans in the labor force at
the start of 2025.

Population growth rate
- gL (%/year)

-1.00% to 2% (0.25%) The annual rate of human population increase.

Continued on next page

41In principle users can choose any value for parameters within their theoretical or plausible empirical
ranges. However, for extreme parameter values our solution algorithm may not converge, in which case
our model playground will typically deliver an error warning. Further details about this provided below.
Moreover, for parameters for which there is very little empirical uncertainty we hard code them at their
empirically documented values.
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Table 3 – Continued from previous page

Parameter (units) Range (default) Explanation

Initial capital stock -
K0 (real USD)

200 trillion to 1
quadrillion (450
trillion)

Total value of physical capital in the economy
at the start of 2025.

Output elasticity of
capital - α

(dimensionless)

0.2 to 0.6 (0.35) This measures how much GWP increases for
each increase in capital, where
GWP 9 capitalα. For example, if α “ 0.5, a
4ˆ increase in capital results in a 2ˆ increase
in GWP, all else equal.

Initial non-accumulable
capital stock - F p0q

(dimensionless)

1 trillion Total value of “nature” endowments in the
economy at the start of 2025.

Output elasticity of
non-accumulable factor
- µ (dimensionless)

0 to 0.3 (0) This measures how much GWP would increase
for each unit increase in non-accumulable
capital, where GWP9natureµ. For example, if
µ “ 0.5, a 4x increase in capital results in a 2x
increase in GWP, all else equal.

Adjustment timescale
for capital stock αK

(Years)

0.5 to 2 (1) The adjustment timescale captures how quickly
capital investments can be converted into
conventional capital. For example, if αK is 1
year, investing at a rate of 100% of the current
stock per year means that around 70% of the
investment is lost to adjustment costs
(assuming adjustment costs grow
quadratically).

Capital depreciation -
δK (%/year)

0.3% to 20.0% (6.5%) The rate at which capital loses value over time.
For example, if δK “ 5%, this means 5% of an
existing capital stock is lost each year.

Substitution parameter
- ρ (dimensionless)

-5 to -0.2 (-0.65) Captures how easily labor on different tasks
substitute or complement each other. If ρ ă 0,
the tasks are primarily complementary. For
instance, suppose that ρ “ ´0.5, and that the
labor input is allocated uniformly across
different tasks. If the labor input to a third of
the tasks is set then to infinity, the total output
would increase by 2.25ˆ. We enforce ρ ă 0 to
ensure that tasks are gross complements.

Continued on next page
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Table 3 – Continued from previous page

Parameter (units) Range (default) Explanation

Consumption discount
rate - β (%/year)

3% to 7% (5%) The rate at which future consumption is valued
less than present consumption. For example, a
discount rate of 5% means that the utility from
consumption in the next year is worth 95% of
the same amount of consumption today.

Utility function
parameter (relative risk
aversion) - η

(dimensionless)

1 to 6 (1.45) Parameter of the isoelastic utility function
c1´η´1

1´η that determines risk preferences. η “ 1
corresponds to taking log utility, and as η

increases, consumers become increasingly
risk-averse. For example, η “ 2 suggests
indifference between maintaining current
consumption, and taking a bet with a 50%
chance of doubling consumption and a 50% of
decreasing consumption by a third.

• Initial gross world product Y p0q: $105T to $115T ($105T).
According to the World Bank, the GWP in 2023 was around $106T (The World
Bank, 2022a). For our defaults we assume around 3% annual GWP growth, resulting
in a default of around $110T. For the lower end of the range we use around the 2023
value, and for the upper value we add a buffer of around two more years of 3%
growth.

• Initial labor force Lp0q: 3.4 billion to 3.8 billion (3.6 billion).
According to the World Bank, the labor force in 2023 was 3.6B (The World Bank,
2023). This corresponds to a labor share of around 45%, and we consider lower and
upper bounds for the range by considering labor shares of around 42.5% to 47.5%
respectively.

• Population growth rate gL: -1.00% to 2% (0.25%).
We weight estimated population growth rates by GDP per capita. High-income
countries grow „0.1%year, middle income 1%/year, and low income „3%/year.
Since the ratio of high to lower-middle income labor is 3:2, we arrive at around
„0.5%/year (United Nations, 2022). We reduce this slightly to 0.25% given the
broadly observed trend towards lower birth rates across different countries.

• Initial capital stock K0: $200T to $1Q ($450T).
We obtain a rough estimate of this based on standard capital depreciation rates and
gross savings rates. In particular, global gross savings rates are around 27% of GWP
(The World Bank, 2022b), and a standard capital depreciation rate is 6% per year
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(Nadiri and Prucha, 1993). Given that current GWP is „ $100 trillion (The World
Bank, 2022a), we estimate the worldwide capital stock as 0.27 ¨ $1e14 ¨ 1{0.06 «

$4.5e14. We assume roughly 2x uncertainty in this number for our overall range.

• Output elasticity of capital α: 0.2 to 0.6 (0.35).
This is loosely based on Jones et al. (2003), where estimated capital shares are
generally around 0.35, and between 0.2 and 0.6.

• Initial non-accumulable capital stock F p0q: 1 trillion.
This parameter helps illustrate the possibility of a non-accumulable factor limiting
the total output. The specific starting value of this parameter is not particularly
important since the TFP is adjusted to make this match initial GWP.

• Output elasticity of non-accumulable factor µ: 0 to 0.3 (0).
By default, this parameter is chosen to exclude the presence of the non-accumulable
factor. To illustrate the significance of the non-accumulable factor, we can also
choose µ such that the production function has constant returns to scale in all
inputs.

• Capital adjustment timescale αK : 0.5 to 2 (1) year.
Groth (2005) estimates capital adjustment costs using a similar functional specifica-
tion on data from the UK economy between 1970-2000, and finds αK to be around
1-3. Similarly, Groth and Khan (2010) generally report estimates of the adjustment
cost parameter to roughly between 0.1 and 10, depending on the data and the pre-
cise functional form used. For our purposes we opt for 1 as a rough estimate, and
assume a 2ˆ factor of uncertainty.

• Capital depreciation δK : 0.3% to 20.0% (6.5%).
The capital depreciation rates are chosen to roughly correspond with the values in
Nadiri and Prucha (1993); Giandrea et al. (2022).

• Substitution parameter ρ: -5 to -0.2 (-0.65).
Knoblach et al. (2019) measure long-run elasticities of substitutions for the aggregate
economy at in the range of 0.45-0.87. We interpolate between the corresponding
substitution parameters to obtain 1

2

`0.45´1
0.45 ` 0.87´1

0.87

˘

« ´0.65. We loosely account
for a range of uncertainty, bounded above by ´0.2 ă 0 so that labor inputs are
always gross complements, and bounded below by -5, which suggests very substantial
complementarities.

• Consumption discount rate β: 3% to 7% (5%).
Moore et al. (2004) suggest using a social discount rate of 3.5%, and Zhuang et al.
(2007) point out that developed countries tend to use consumption discount rates of
3-7%. We opt for a round number of around 5% as our default parameter estimate,
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and use 3-7% as our range.

• Relative risk aversion in isoelastic utility η: 1.45.
A meta-analysis by Havránek et al. (2015) collects 2,735 estimates of the elasticity
of intertemporal substitution (EIS) in consumption. Across 1429 studies for the
United States, they find a mean EIS of 0.594 (η « 1.7). They find that households
in countries with higher income per capita and higher stock market participation
show larger values of the EIS. For example, they find an estimated posterior mean
of the regression coefficient for income per capita of around 0.13, meaning that a
doubling of GDP per capita results in an increase in EIS by roughly 0.13. Given
the rapid economic growth in our model, we opt for a value of η of 1.5. This also
matches with the baseline calibration value of 2{3 in the DSGE work of Smets and
Wouters (2007) (η “ 1.5q.42

D.2 Technological parameters

D.2.1 Hardware R&D parameters

Table 4: Software R&D Parameters

Parameter (units) Range (default) Explanation

Initial hardware
efficiency - Hp0q

(FLOP/year/$)

1.00 ˆ 1017 to
1.00 ˆ 1019

(1.00 ˆ 1018)

Number of computations performed per dollar
per year at the start of simulations.

Maximum hardware
efficiency - Hmax

(FLOP/year/$)

1.00 ˆ 1021 to
1.00 ˆ 1025

(1.00 ˆ 1023)

Maximum possible hardware efficiency of AI
hardware, based on the current paradigm of
CMOS microprocessors. See Section 3.5.

Initial inputs to
hardware R&D -
IRD

H p0q (real USD/year)

1.00 ˆ 1010 to
1.00 ˆ 1012

(1.00 ˆ 1011)

Amount spent on improving hardware
efficiency per year at the start of 2025.

Continued on next page

42Elminejad et al. (2022) perform a meta-analysis of papers that estimate the relative risk aversion η

using the consumption Euler equation. They find a mean relative risk aversion of around 1 in economics
contexts (e.g. η “ 1.2 under their preferred practice in their table 6), but substantially higher (lower η)
in finance contexts.

71



Table 4 – Continued from previous page

Parameter (units) Range (default) Explanation

Returns to scale in
hardware R&D λH

(dimensionless)

0.0625 to 1 (0.14) This parameter controls the extent to which
investments in hardware R&D translate into
increases in hardware efficiency. If λH ą 1, this
corresponds to a network effect where having
more R&D investment yields increasing
returns. If λH ă 1, this is a “stepping on toes”
effect where increasing R&D investment yields
diminishing returns. For example, a value of
λH “ 0.5 indicates that a doubling in
investment only results in a

?
2 increase in

hardware efficiency growth.
Returns to scale in
hardware efficiency ϕH

(dimensionless)

0.01 to 1 (0.0769) This parameter determines how the growth
rate in hardware efficiency changes with the
level of efficiency. If this is less than 0, this
captures the effect where greater efficiency
makes it easier to achieve further efficiency
gains. If this is greater than 0, this captures
the “fishing out” effect, where further efficiency
gains become harder to find as further progress
is made. For example, a value of ϕH “ 0.5
indicates that a doubling in efficiency results in
a

?
2 decrease in hardware efficiency growth.

The value of this parameter is often estimated
based on the returns to R&D, given by λH{ϕH .

Hardware R&D
productivity parameter
θH - (FLOPϕH

year´1´ϕH ´λH

$´ϕH `λH )

0.001 to 1000 (0.192) A multiplicative scaling factor that determines
how well hardware R&D investments translate
into hardware efficiency improvements. This is
determined by rearranging equation 4, and
using estimates of existing growth rates of
hardware efficiency.

• Initial hardware efficiency H: 1e18 FLOP/year/$.
We anchor our estimate of this parameter to the H100 GPU, which is commonly
used for training state of the art AI systems (Lee et al., 2024). It performs around
1e15 FLOP/s (NVIDIA, 2024), and costs around $40k (Leswing, 2023). Over a
year, this corresponds to 1e15 ¨365 ¨24 ¨3600{40000 « 1e18 FLOP/year/$. We allow
for around 1 order of magnitude of uncertainty in this parameter.

• Maximum hardware efficiency: 1e23 FLOP/year/$.
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We estimate this parameter with the same procedure proposed in Davidson (2023).
In particular, we first determine an upper bound to the FLOP/$ by decomposing it
into a product of the energy efficiency in FLOP/J and the inverse of the cost per unit
of energy (J/$). The hardware efficiency in FLOP/$/year is then determined by
estimating the time range over which hardware is likely to be used, and amortizing
the cost of a processor over that time period.

For the FLOP/J, Ho, Erdil and Besiroglu (2023) proposes a simple model to estimate
the limits to the energy efficiency of CMOS processors, which has a geometric mean
estimate of around 5 ˆ 1015 FLOP/J at 4-bit precision, with a log-space standard
deviation of 0.7 OOMs. Assuming quadratic scaling of energy costs with number
precision, this corresponds to around 3 ˆ 1014 FLOP/J at 16-bit precision. If we
assume that energy costs can fall from $0.1/kWh today to $0.01/kWh, then we have

p5 ˆ 1015 FLOP/Jq ¨ p3.6 ˆ 108 J/$q « 1024 FLOP/$

If we further assume that hardware costs are amortized over 10 years, we arrive at
a hardware efficiency of 1023 FLOP/year/$.

In practice it is unclear whether the optimal substructure assumption that the max-
imum FLOP/$ can be determined by individually maximizing the FLOP/J and the
J/$. It is possible for instance that other bottlenecks may bind prior to reaching
limits in FLOP/J or J/$. This introduces uncertainty that goes beyond the un-
certainty inherent in the estimates of the FLOP/J, J/$ and amortization period
themselves.

We allow for a range of 2 OOMs above or below this default estimate, to account
for these uncertainties.

• Initial inputs to hardware R&D: $100B/year.
We obtain a ballpark estimate for this parameter by considering R&D spend-
ing from big hardware companies. In 2022, this was $17.5B for Intel (Alsop,
2024b), $5.47B for TSMC (Limited, 2022), $5B for AMD (Alsop, 2024a), $5.3B for
NVIDIA (Macrotrends, 2024b), and $3.4B for ASML (Macrotrends, 2024a). Since
the distribution of hardware R&D spending appears very heavy tailed, we assume
a Zipfian distribution with Intel as the leader, and assume there are around 100
firms doing significant hardware R&D worldwide. This results in an estimate of
$17.5B ¨ H100 « $90B for global R&D spending on hardware, where H100 « 5.2
is the 100th harmonic number. We round this figure up to $100B, and allow for
uncertainty around 10ˆ higher or lower than this default estimate.

• Returns to scale in hardware R&D λH : 0.14.
For our central estimate of the returns to labor inputs, we anchor weakly to Erdil
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et al. (2024). They find a value of around 0.4 for human labor inputs on Stockfish,
for which by far the best data was available (here we use the same value of λ as
for software R&D). We then multiply this by around 0.35, an elasticity parameter
between monetary investment and change in the labor inputs to R&D, which gives
0.4 ˆ 0.35 “ 0.14. For our range, we consider a lower value of λH of 0.25 (with
elasticity 0.25), and an upper value of 1 (with elasticity 1).

• Returns to scale in hardware efficiency ϕH : 0.0769.
The most reliable empirical estimates usually apply to the overall R&D returns
λH{ϕH , so given the value of λH and these returns we can work out the value
of ϕH . Davidson (2023) estimates hardware R&D returns of around 5.2 based on
GPU data from 2006-2022, with a range from around 4.3 to 7.1. Given a central
estimate of λ “ 0.4 before considering human R&D input elasticities (see λH), we
have ϕH “ 0.4{5.2 “ 0.0769. We consider around 1 OOM of uncertainty in this
parameter on either side.

• Hardware R&D productivity parameter θH : 0.192.
We work this out by rearranging the law of motion for hardware R&D. This gives
δH “ gHHϕH I´λH , where gHp0q = 27.5%/year, Hp0q = 1e18 FLOP/year/$, ϕH “

0.0769, Ip0q = $1e11/year, and λH “ 0.14. Hence we have δH “ 0.275 ¨ 1e180.0769 ¨

1e11´0.14 « 0.192 (3 s.f.). We allow for three OOMs of uncertainty in this param-
eter, since uncertainty in the exponents can substantially change the value of this
constant.

D.2.2 Software R&D parameters

Table 5: Software R&D Parameters

Parameter (units) Range (default) Explanation

Initial software
efficiency - Sp0q

(eFLOP/FLOP)

1 Software efficiency at the start of 2025. If
software efficiency is 2, this is equivalent to
having 2ˆ the budget of available physical
compute. Note that this parameter is not
shown in the simulation playground since it is
trivially initialized to 1 by definition.

Maximum software
efficiency - Smax

(eFLOP/FLOP)

50 to 1.00 ˆ 108

(1.00 ˆ 104)
Maximum possible software efficiency of AI
algorithms, based on the current paradigm of
deep learning. See Section 3.5.

Continued on next page
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Table 5 – Continued from previous page

Parameter (units) Range (default) Explanation

Initial inputs to
software R&D - IRD

S p0q

(real USD/year)

1.00 ˆ 109 to
2.50 ˆ 1010 (5.00 ˆ 109q

Amount spent on improving software efficiency
per year, as measured at the start of 2025.

Returns to scale in
software R&D λS

(dimensionless)

0.14 to 1 (0.0625) This parameter controls the extent to which
investments in software R&D translate into
increases in hardware efficiency. If λS ą 1, this
corresponds to a network effect where having
more R&D investment yields increasing
returns. If λS ă 1, this is a “stepping on toes”
effect where increasing R&D investment yields
diminishing returns.

Returns to scale in
software efficiency ϕS

(dimensionless)

0.1 to 1 (0.32) This parameter determines how the growth
rate in software efficiency changes with the
level of efficiency. If this is less than 0, this
captures the effect where greater efficiency
makes it easier to achieve further efficiency
gains. If this is greater than 0, this captures
the “fishing out” effect, where further efficiency
gains become harder to find as further progress
is made. The value of this parameter is often
estimated based on the returns to R&D, given
by λS{ϕS .

Software R&D
productivity parameter
θS - (yearλS´1

(eFLOP/FLOP)ϕS

$´λS )

0.001 to 1000 (0.0307) A multiplicative scaling factor that determines
how well software R&D investments translate
into software efficiency improvements. This is
determined by rearranging equation 4, and
using estimates of existing growth rates of
software efficiency.

• Iniital software efficiency Sp0q: 1 eFLOP/FLOP.
Since software efficiency is defined in terms of the number of “effective FLOP”
relative to each physical FLOP in 2025 (the start of simulations), this is initialized
to 1 by definition.

• Maximum algorithmic efficiency: 1e5 eFLOP/FLOP.
This parameter is highly speculative, and we are forced to consider several very
rough arguments to try and get a handle on its value. Bubeck and Sellke (2022)
argue that for a Lipschitz-smooth function to fit d-dimensional data, at least n ˆ d
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parameters are required. For a rough estimate we consider the ImageNet dataset for
image classification, which contains n « 1000 classes and around d « 40 intrinsic
dimensions (Pope et al., 2021).

We approximate the minimum necessary training compute as C « 6ND, where
N “ nˆd is the number of model parameters and D is the number of datapoints. In
this context, we interpret each “datapoint” as a particular “patch” of an image which
has been encoded as a vector. Patch dimensions of 8ˆ8 pixels are fairly common,
and since the most common image size is 500ˆ500 (Ehrlich, 2021), this corresponds
to around 4000 tokens. If we assume that through algorithmic innovation this can in
principle be reduced by an OOM, we are left with 400 tokens. Combining the above
results in C « 6 ¨ p40 ¨ 1000q ¨ p1000 ¨ 400q « 1e11 FLOP. By comparison, the current
state of the art system on the ImageNet benchmark, ViT-Huge/14 (Dosovitskiy
et al., 2021) was trained with 4e21 FLOP (Epoch, 2024). This thus suggests that
ViT-Huge/14, which achieves 89% top-1 accuracy on ImageNet, could have been
trained with around 10 OOM fewer FLOP.

Another approach, followed by Davidson (2023) is to anchor to the efficiency of the
human brain. In particular, Cotra (2020) estimates that a human performs around
1e24 FLOP over the first 30 years of life, which is around 12 OOMs lower than
Davidson’s median estimate for the compute needed to train AGI (at 1e36 FLOP).

As a third heuristic, Ho et al. (2024) and Erdil and Besiroglu (2022) estimate growth
rates of 0.4 OOM/year for algorithmic progress in language models and computer
vision respectively. This corresponds to „4 OOM of sustained algorithmic progress
since 2014, and it seems broadly reasonable to expect this to persist for another 4
OOMs with greater than 50% probability.

Overall, there is a tremendous amount of uncertainty over this parameter and as
such we consider a wide range of possible values, ranging from 50 to 1e8.

• Initial inputs to software R&D: $10B/year.
We estimate this based on the number of researchers and researcher salaries, since
algorithmic improvements are mainly driven by researcher effort at present. Benaich
and Hogarth (2019) report around 20,000 unique authors on machine learning papers
in 2019, so for a ballpark figure we assume there are 50k researchers in AI today. If
each researcher is paid around $100k each, this corresponds to around $5B per year.
For lower and upper ranges we consider 5ˆ more or less than the default estimate.

• Returns to scale in software R&D λS: 0.14.
For our central estimate of the returns to labor inputs, we anchor weakly to Erdil
et al. (2024). They find a value of around 0.4 for human labor inputs on Stockfish,
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for which by far the best data was available (here we use the same value of λ as
for software R&D). We then multiply this by around 0.35, an elasticity parameter
between monetary investment and change in the labor inputs to R&D, which gives
0.4 ˆ 0.35 “ 0.14. For our range, we consider a lower value of λS of 0.25 (with
elasticity 0.25), and an upper value of 1 (with elasticity 1).

• Returns to scale in software efficiency ϕS: 0.32.
The most reliable empirical estimates usually apply to the overall R&D returns
λS{ϕS, so given the value of λS and these returns we can work out the value of ϕS.
Erdil et al. (2024) find returns on the order of 1.25 for software across a range of
different domains (e.g. computer vision and computer chess). For our default value
we therefore have 0.4/1.25 = 0.32. We account for around 1 OOM of uncertainty
in this parameter.

• Software R&D productivity parameter θS: 0.0307.
We work out this parameter by rearranging the law of motion for software R&D,
where we have δS “ gSSϕS I´λS . We also have that gSp0q = 70%/year, Sp0q =
1 eFLOP/FLOP, ϕS “ 0.32, Ip0q = $5e9/year, and λS “ 0.14. Hence we have
δS “ 0.7 ¨ 10.32 ¨ 5e9´0.14 « 0.0307 (3 s.f.). Similar to θH , we allow for substantial
uncertainty in this parameter.

D.3 AI and compute parameters

D.3.1 Compute investment parameters

Table 6: Compute Investment Parameters

Parameter (units) Range (default) Explanation

Initial compute
investment - IQp0q (real
USD/year)

5.00 ˆ 1010 to
8.00 ˆ 1011

(2.00 ˆ 1011)

Initial dollar spending on compute production.

Compute adjustment
cost exponent - χ

(dimensionless)

3 to 5 (4) Determines how steep the adjustment costs are
from increasing the stock of compute. An
exponent of 2 means that adjustment costs
grow quadratically with investment flows.

Continued on next page
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Table 6 – Continued from previous page

Parameter (units) Range (default) Explanation

Compute adjustment
timescale - αQ (years)

1 to 4 (2) The adjustment timescale captures how quickly
compute investments can be converted into
compute stock. For example, if αQ is 1 year,
investing at a rate of 100% of the current stock
per year means that around 70% of the
investment is lost to adjustment costs,
assuming that adjustment costs grow
quadratically (this depends on the compute
adjustment cost exponent).

• Initial compute investment: $200B/year.
Major AI firms spent on the order of $50B per quarter in 2024 (PYMNTS, 2024),
so we loosely assume around $200B over the entire year. We account for around 4ˆ

uncertainty in this parameter.

• Compute adjustment cost exponent (χ): 4.
The production of AI chips relies on an intricate supply chain that is difficult to
expand due to the use of advanced technologies and materials. As a result, supply
of compute-related capital is likely highly inelastic, and larger-than-usual premia
may need to be paid to expand the compute-related capital stock on a timescale
smaller than is typically needed to produce new fabs, datacenters, and lithography
machines. Given that we choose quadratic adjustment costs for conventional capital,
we assume substantially steeper costs with an exponent from 3 to 5 for compute.

• Compute adjustment timescale (aQ): 2 years.
This parameter is the counterpart to the capital adjustment timescale αK , where
the reciprocal corresponds to the rate at which the compute stock can be grown
before adjustment costs become significant. AI chip manufacturing depends on a
complex, hard-to-scale supply chain, featuring sophisticated lithography, advanced
packaging, specialized photoresists, and specialized chemicals. Using a sample of 635
fab construction projects between from 1990-2020, VerWey (2021) finds that it takes
between 1.6 to 2.2 years from fab construction to production depending on the region
the fab was constructed in. This suggests that under “normal” conditions when
extreme adjustment costs are avoided fab capacity can be substantially expanded
just under two years. For the range, we choose values 2ˆ larger or smaller than this
default estimate.

• Compute depreciation (δQ): 0.3/year.
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Ostrouchov et al. (2020) analyzes the reliability and lifetimes of the 18,688 GPUs in
the Titan supercomputer at Oak Ridge National Laboratory over its nearly 7 year
lifespan from 2012 to 2019. On average, GPUs in the Titan supercomputer lasted
around 2.8 years before experiencing failures. However, some units failed much
earlier than expected, requiring replacements. GPUs installed in 2017 to replace
the failing units lasted significantly longer, often beyond 3 years. The failure rate is
pmean time to failureq´1 « 0.3/year.

D.3.2 Compute stock parameters

Table 7: Compute Stock Parameters

Parameter (units) Range (default) Explanation

Largest training run -
CT p0q (eFLOP)

2e25 to 2e26 (5e25) Largest training run in effective floating point
operations (eFLOP) at the start of 2025.

Physical compute limit
- CL (FLOP/year)

8.60 ˆ 1034 to
5.00 ˆ 1041

(2.00 ˆ 1038)

Bound on total FLOP that can be performed
per year due to thermodynamic limits.

• Largest training run (CT p0q: 5e25 eFLOP.
At the time of writing, the largest training run performed was for Google Deepmind’s
system Gemini Ultra, at roughly 5e25 FLOP (Epoch AI, 2023). This estimate was
obtained by combining two approaches: (1) backing out compute estimates based on
known relationships between training compute and performance on certain machine
learning benchmarks, and (2) using details of the hardware used during training.43

• Physical compute limit CL: 2e38 FLOP/year.
Under the existing CMOS paradigm for microprocessors, computations are generally
performed irreversibly, and this results in heat dissipation. As a result, if excessively
large quantities of compute are performed in some timeframe, the resulting heat
dissipation might be extremely large and have massive environmental effects.

As such, this parameter acts as an upper bound to the FLOP/year. We derive this by
combining existing estimates of the maximum FLOP/J of CMOS microprocessors,
and estimate a maximum J/year that can be devoted to computation. For the
former, Ho, Erdil and Besiroglu (2023) estimate that the maximum energy efficiency
of CMOS microprocessors is roughly 5e15 FLOP/J. For the latter, we assume that
energy availability is capped at 1% of the Earth’s annual energy dissipation, yielding
approximately 5e22 J/year based on the Stefan-Boltzmann law.44If we combine these

43The calculations can be found in this colab notebook.
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two results we arrive at a limit of 2e38 FLOP/year.

For the lower end of our range, we consider 2 standard deviations below the ideal
CMOS efficiency, and multiply this by the energy consumption of today (i.e. 5e20
J/year (Institute and Smil, 2024)). Thus we have 5e20 J/year * 1.6e14 FLOP/J =
8e34 FLOP/year.

For the higher end of our range, we consider 2 standard deviations above the default
ideal CMOS efficiency, and multiply this by 100% of the Earth’s energy budget. This
is 5e24 J/year * 1e17 FLOP/year = 5e41 FLOP/year.

D.3.3 Runtime compute parameters

Table 8: Runtime Compute Parameters

Parameter (units) Range (default) Explanation

Initial runtime compute
CIp0q (eFLOP/year)

1e27 to 1e29 (1e28) Total compute available for running AI systems
each year, as of the start of 2025.

Runtime compute
requirements - 10γ0

(FLOP/year)

1e13 to 1e17 (1e15) Minimum runtime compute cost of substituting
a worker for the easiest to automate tasks, at
maximum overtraining (i.e. after maximizing
training compute to minimize future inference
costs).

Task-level runtime
compute requirements
γ1 (dimensionless)

7 to 11 (9) Increase in the runtime compute cost in orders
of magnitude across tasks, going from
automation of the first tasks to full automation.

Inference - training
tradeoff parameter - m

(dimensionless)

1 to 4 (2) Slope of inference compute tradeoff in
determining the effective compute size of a
system. This captures how many OOMs of
inference compute can be substituted for 1
OOM of training compute while achieving the
same level of performance. See equation (2).

Continued on next page

44This says that P “ σAT 4, where P is power, σ “ 5.6 ˆ 10´8 Wm´2K´4 is the Stefan-Boltzmann
constant, A is the surface area of the Earth, and T is the Earth’s surface temperature. (Note that
this setup assumes the Earth is an ideal black body with emissivity ϵ “ 1, which does not affect our
conclusions.) Assuming the earth has a radius of 6.4 ˆ 106 m (Mamajek et al., 2015) and surface
temperature of 300 K, then we arrive at a rough estimate of 5 ˆ 1024 J/year in annual energy dissipation.
Taking 1% of this estimate yields our result.
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Table 8 – Continued from previous page

Parameter (units) Range (default) Explanation

Max inference training
compute tradeoff - ιmax

(dimensionless)

103 to 107 (105) Maximum value of inference multiplier. This
includes effects from both decreasing
overtraining and increasing inference scaling,
both of which would increase the multiplier
(where the ”unadjusted runtime compute cost”
assumes maximum overtraining). See equation
(2).

• Initial runtime compute Dp0q: 1e28 FLOP.
While the compute devoted to training Gemini Ultra is large by historical standards,
the overall compute resources that are not currently dedicated for AI training is sub-
stantially larger. For example, Steinhardt (2023) estimates the total compute stock
to be around 1e29 FLOP,45 and Barnett 2023 similarly estimates that all the AI
hardware in the world can produce at most 1e22 FLOP/s (or 3e29 FLOP/year).
Both of these values are based on estimates of the quantity of sold microproces-
sors (e.g. H100 GPUs), and theoretical performance metrics for these processors
obtained from official datasheets. However, since in practice it is unlikely that all
of this theoretically-available runtime compute can be allocated to AI training, we
adjust this estimate down by an OOM to obtain 1e28 FLOP. We account for around
1 OOM of uncertainty above or below this default estimate.

• Baseline runtime compute requirement 10γ0 : 1e15 FLOP/year.
For this parameter, we anchor loosely to the inference compute required for one
of the first automated tasks, namely optical character recognition (OCR). Each
forward pass required several hundred thousand to a million mult-adds, and so we
loosely anchor to around 1M FLOP per forward pass (e.g. LeNet-4 involved 260k
mult-adds per forward pass (Bottou et al., 1994)). Assuming that each forward pass
can be used to analyze one character, and around 20 characters are processed per
second, this corresponds to around 6e14 FLOP/year, which we round up to 1e15
FLOP/year. There is substantial uncertainty over this parameter (e.g. in terms of
which task was automated first, the precise minimum runtime compute requirement,
which examples to anchor to, etc.) and so we introduce a range of around 2 OOMs
on either side of our central estimate.

• Task-level runtime compute requirement slope γ1: 9 (OOMs).
Compared to the easiest tasks, we assume that the hardest tasks to automate have

45In particular, Steinhardt (2023) estimates that GPT-4 ( 1e25 FLOP) was trained on around 0.01%
of the world’s compute resources, which suggests an overall runtime compute of around 1e29 FLOP.
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a computational requirement similar to that of the human brain. To this end, we
anchor to Carlsmith (2020), who estimates that the human brain does the equivalent
of 1e15 FLOP/s, or around 3e22 FLOP/year. Since the brain is known to be highly
efficient, we shift this estimate up around 1-2 OOMs to arrive at 1e24 FLOP/year
as the minimum runtime compute cost. This parameter is highly uncertain, and as
such we account for 2 OOMs of uncertainty on either side of our central estimate.

• Inference-training compute tradeoff : 2.
We base our central estimate of 2 OOMs on the estimates from Villalobos and
Atkinson (2023), and allow for roughly 2ˆ uncertainty, roughly consistent with the
provided estimates.

• Max inference training compute tradeoff : 5.
Villalobos and Atkinson (2023) argue that it is possible to increase inference by
2-6 OOMs in exchange for less training compute, depending on the type of task.
In the opposite direction, it is possible to decrease inference compute by 1 OOM
in exchange for more training compute (overtraining). For our central estimate we
hence choose 4 ` 1 “ 5 OOMs.

D.3.4 Automation parameters

Table 9: Automation Parameters

Parameter (units) Range (default) Explanation

AGI training
requirements - T

(eFLOP)

1e33 to 1e41 (1e36.5) Effective FLOP required to train AI systems
capable of automating all tasks.

Initial fraction of
automated tasks - finit

(dimensionless)

0.05 to 0.2 (0.1) Initial fraction of tasks in the economy that
can be automated. Determines whether
runtime compute has any economic value at
the start of simulations.

Flop gap fraction - ∆f

(dimensionless)
0.4 to 0.8 (0.55) Ratio between the training compute needed to

automate all tasks and the training compute
needed to automate the least demanding
currently-unautomated tasks.

• AGI training requirements T : 1e36.5 FLOP.
We take a rough central estimate from Cotra (2020), which estimates the com-
putational requirements for training a transformative AI system using ”biological
anchors” (e.g. from the human brain or evolution), to get 1e36.5 FLOP. This pa-
rameter is highly uncertain, so we account for several OOMs of uncertainty ranging
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from 1e33 to 1e41, based on the distribution of FLOP requirements reported by
Cotra.

• Initial fraction of automated tasks fp0q: 0.1.
This parameter describes a latent variable which loosely corresponds to the fraction
of automated tasks at the start of simulation. We estimate this parameter using
two main sources of evidence. First, we examine the historic share of GWP for
compute, which increased from 0% to 0.1% by the 2000s.46 Under the GATE
production function, using our median runtime compute requirements, this implies
an automated fraction of 10%. Second, we examine the estimates of Acemoglu and
Restrepo (2019) who investigated automation by relating the labor share, sectoral
productivity changes and labor reallocation. Between 1987 and 2017 they found a
net change in task content of production of approximately 10%. As such, we choose
10% as our median estimate for this parameter, such that runtime compute initially
has some economic value. We account for around 2ˆ uncertainty in this parameter.

• FLOP gap fraction: 0.52.
This parameter describes the ratio between the effective training compute needed
to automate all tasks, and the effective training compute needed to automate the
least demanding currently-unautomated tasks. This is measured in OOMs, divided
by the initial distance in OOMs between the largest initial training run and AGI
training requirements. Thus this fraction corresponds to

Cp100%q ´ Cp20%q

Cp100%q ´ Cpinitq , (37)

where Cpx%q is the base 10 logarithm of the compute required for x% automation.
Intuitively, this parameter captures how soon pre-AGI systems start automating
the economy. If this parameter is zero, then only AGI can automate anything; if
this parameter is one, then we see steady linear progress in automation at current
training run sizes.

Since we only have weak evidence for this parameter, we adopt a fairly broad distri-
bution over its values. Some studies suggest that present day AI systems can already
automate some tasks that older systems could not (Owen and Besiroglu, 2023), and
other sources predict the potential for substantial automatability (Davidson, 2023)
or exposure (Eloundou et al., 2023) over the next decade. On current trends, a
decade involves 5 OOMs compute scaling (Epoch AI, 2023), i.e. 1e30.5 FLOP. As
a FLOP gap fraction for our median training requirements, this results in a FLOP
gap fraction of around 0.55.

46For example, Stewart 2021 reports that global chip revenues were around 0.4% of GWP in 2005.
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For the lower end of our range, we note that several AI researchers anticipate rapid
improvements in AI capabilities across relatively small scaling of compute. If we
assume 2 OOM of compute could raise AI systems from insignificance to automating
half of the economy, then this roughly corresponds to a ∆f « 2 ˚ 2{11 “ 0.4 for
our range of AGI training requirements T . For our upper end, we consider the
situation where 2 more OOMs are needed to reach an increase in the fraction of
tasks automated, which results in a fraction of ∆f “ p11 ´ 2q{11 « 0.8.

D.4 Add-ons
Table 10: Add-ons

Parameter (units) Range (default) Explanation

R&D wedge - ξ

(dimensionless)
2 to 20 (8) This parameter helps account for differences

between the private and social benefits of
R&D. When this parameter is 5, investments
into R&D are cut by 1/5th, to capture the
effect where positive externalities decrease the
private returns to investment.

Number of automation
functions (uncertainty
add-on) - |F |

(dimensionless)

1 to 20 (5) Number of automation functions in the
support of planner’s beliefs when uncertainty
add-on is activated. See Section 6.2.

Maximum automation
parameters
(uncertainty add-on) -
tζiu, 1 ď i ď |F |

(dimensionless)

0 to 1 (no default) Parameters describing the shape of the
alternative, “untrue” automation functions that
are in the support of the planners beliefs at the
start of the simulation when the uncertainty
add-on is activated. See Section 6.2.

Beliefs over alternative
automation functions
(uncertainty add-on) -
tGpfiqui , 1 ď i ď |F |

(dimensionless)

0 to 1 (no default) Parameters describing the probability of each
of the possible automation functions that are
in the support of the planners beliefs at the
start of the simulation when the uncertainty
add-on is activated. See Section 6.2.

Initial labor force task
i, no reallocation -
Lip0q (no. of human
workers)

Initial labor force per
task (no reallocation)
(3.6 billion)

Total number of humans involved in task i at
the start of simulations. This applies to the no
reallocation scenarios discussed in Section 4.3.

The model playground is initialized with a set of pre-specified default parameters (outlined
in the second columns of Tables 3 to 9 above). Users are able to either manually modify
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parameters within their permissible ranges (also outlined in the second column of Tables
3 to 9) or select from pre-specified bundles of parameters or scenarios (e.g., median, 5th
or 95th percentile values for parameters based on estimates from the existing empirical
literature).

The model playground updates graphs and charts as users adjust parameters. More-
over, to enhance functionality, the playground includes an additional feature, namely the
possibility to engage in scenario comparisons. The modeling tool allows users to save
and compare the outputs of multiple simulation runs, enabling side-by-side evaluations of
distinct assumptions or parameter values.

Sanity checks To bolster confidence in GATE’s optimizer, we implement two built-in
“sanity checks.” First, a simple policy check47 ensures that the flexible, high-dimensional
solution is not outperformed by a restricted baseline. Second, a spliced utility check48

substitutes a log-based tail for large consumption levels and verifies that the main solu-
tion remains robust. These checks help ensure that the interactive playground does not
inadvertently present suboptimal or unstable trajectories, increasing confidence in the
model’s outputs.

Parameters requiring extra caution In configuring GATE, three parameters war-
rant particular caution: the substitution parameter ρ in our CES aggregator, the coeffi-
cient of relative risk aversion η in the utility function, and the FLOP gap ∆FLOP in the
automation function. First, pushing ρ too far below zero or extremely close to zero from
below makes the tasks nearly Leontief (i.e. near-perfect complements), which can create
numerical instability. Second, making η overly large or extremely close to one can yield
excessively steep or flat gradients in the objective function (equation 19), undermining
gradient descent. Finally, ∆FLOP governs how quickly the fraction of tasks automated,
fptq, transitions between its initial level and full automation (see equation 13). Setting
∆FLOP below its recommended range may produce an overly “jumpy” automation sched-
ule, while an excessively high value can stagnate automation progress. Hence, to ensure
smoothness in both production and utility—and to keep optimization tractable—users
should keep ρ, η, ∆FLOP within the intervals highlighted in Sections D.

47Here, GATE re-solves the problem under a deliberately simpler, lower-dimensional policy class—e.g.,
using a single vector of decisions for the pre-automation phase, another for partial automation, and so
on. If this simpler approach unexpectedly achieves strictly higher utility than the full solution, it signals
that the main solver may have converged to a suboptimal local optimum.

48In this step, GATE replaces power utility with a log-based tail once consumption surpasses a certain
threshold. This modified utility function avoids potential numerical flatness at extremely high consump-
tion. If the solution found under this “spliced” utility then yields higher welfare when re-evaluated
on the original power utility, it indicates the baseline solution may have been hampered by numerical
pathologies.
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