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 Executive Summary 
 As  general  purpose  AI  technology  develops,  it  may  come  to  have  far-reaching  implications  for 
 international  security,  necessitating  international  governance.  International  governance  of 
 technology  is  generally  difficult,  and  AI  may,  by  default,  be  particularly  difficult  to  govern  due 
 to its intangible and general-purpose nature. 

 We  propose  Flexible  Hardware-Enabled  Guarantee  (flexHEG)  mechanisms,  which  could  be 
 added  to  AI  accelerators  to  enable  multilateral,  privacy-preserving  and  trustworthy  verification 
 and  automated  compliance  guarantees  for  agreements  regarding  the  development  and  use  of 
 advanced  AI  technology.  To  ensure  that  all  parties  could  trust  these  mechanisms,  they  would  be 
 fully  open  source  and  auditable,  while  also  being  robust  to  tampering  even  from  state-level 
 adversaries. 

 This  trustworthy  and  secure  design  means  flexHEG-capable  guaranteeable  chips  could  enable 
 genuinely  multilateral  control  over  frontier  AI  technology.  Mutually  agreed-upon  rules  could  be 
 set  and  updated  through  a  multilateral  and  cryptographically  secure  mechanism  in  order  to 
 guarantee  that  only  agreed-upon  restrictions  are  deployed.  The  flexible,  general-purpose  nature 
 of the mechanism would allow rules to adapt to future developments. 

 Concrete policy options flexHEG could enable include: 
 ●  Limiting the size of training runs in terms of total FLOP 
 ●  Limiting the size of datasets that can be used in a training run 
 ●  Privacy-preserving verification that certain types of training data are not being used 
 ●  Privacy-preserving  verification  that  certain  model  architectures  or  training  methods  are 

 or are not used 
 ●  Requiring  the  possession  of  a  non-expired  license  to  run  computations  of  a  certain  size 

 range 
 ●  Requiring  a  standardized  evals  protocol  to  be  incorporated  into  the  computation  graph 

 of training for sufficiently large training runs 
 ●  Controlling  access  to  model  weights  by  requiring  exported  model  weights  to  be 

 encrypted 

 Several  technical  problems  would  need  to  be  solved  to  create  sufficiently  effective  and  secure 
 flexHEG  mechanisms.  We  are  confident  that  some  variant  of  this  proposal  is  technically  feasible, 
 however,  further  research  is  needed  to  determine  whether  it  can  be  made  sufficiently  secure 
 without  excessive  impact  on  the  price-performance  of  the  overall  package.  In  order  to  ensure 
 that  the  technology  is  available  by  the  time  it  is  needed,  R&D  efforts  to  develop 
 production-ready flexHEGs would ideally begin as soon as possible. 
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 Introduction 
 “Unsafe  development,  deployment,  or  use  of  AI  systems  may  pose  catastrophic  or  even  existential  risks  to 
 humanity  within  our  lifetimes.  These  risks  from  misuse  and  loss  of  control  could  increase  greatly  as  digital 
 intelligence approaches or even surpasses human intelligence. 

 In  the  depths  of  the  Cold  War,  international  scientific  and  governmental  coordination  helped  avert 
 thermonuclear  catastrophe.  Humanity  again  needs  to  coordinate  to  avert  a  catastrophe  that  could  arise  from 
 unprecedented technology.” 

 — International Dialogues on AI Safety, joint statement, Beijing, March 2024 

 Future  AI  systems  could  pose  serious  risks  to  public  safety  and  international  security.  This  has 
 increasingly given rise to calls for domestic regulation and international governance of AI. 

 International  governance  could  create  trust  that  all  relevant  parties  are  taking  appropriate 
 precautions  when  developing  and  deploying  advanced  AI.  However,  there  are  corresponding 
 concerns  about  the  feasibility  of  such  governance.  Agreements  in  international  contexts  are 
 famously  challenging  due  to  the  lack  of  trusted  third  parties  to  help  verify  and  enforce 
 compliance. 

 AI  accelerators  are  a  natural  node  for  AI  governance  because  their  supply  chain  is  extremely 
 concentrated  and  huge  quantities  are  needed  to  train  frontier  AI  models  [1]  .  Governance  could 
 be  supported  by  mechanisms  built  directly  into  AI  accelerators  so  that  restrictions  on  unsafe 
 usage are much harder to circumvent  [2], [3]  . 

 We  propose  Flexible  Hardware-Enabled  Guarantee  (flexHEG)  mechanisms  , 
 which  could  be  added  to  AI  accelerators  to  enable  multilateral, 
 privacy-preserving  and  trustworthy  verification  and  automated  compliance 
 guarantees  for  agreements  regarding  the  development  and  use  of  advanced 
 AI technology, thereby substituting for the missing trusted third party. 

 This  trustworthy  and  secure  design  means  flexHEG-capable  guaranteeable  chips  could  enable 
 genuinely  multilateral  control  over  AI  technology,  thus  making  it  possible  for  a  range  of 
 stakeholders  to  agree  on  a  variety  of  potential  rules,  from  safety  rules  to  robust  benefit-sharing 
 agreements.  Mutually  agreed-upon  rules  could  be  set  and  updated  through  a  multilateral  and 
 cryptographically  secure  mechanism  in  order  to  guarantee  that  only  agreed-upon  rules  are 
 applied.  Guaranteeable  chips  would  also  enable  various  parties  to  make  specific 
 cryptographically verifiable claims that could prove compliance with agreements. 

 Examples of regulatory capabilities that guaranteeable chips could enable include: 
 ●  Limiting the size of training runs in terms of total FLOP 
 ●  Limiting the size of datasets that can be used in a training run 
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 ●  Privacy-preserving verification that certain types of training data are not being used 
 ●  Privacy-preserving  verification  that  certain  model  architectures  or  training  methods  are 

 or are not used 
 ●  Requiring  the  possession  of  a  non-expired  license  to  run  computations  of  a  certain  size 

 range 
 ●  Requiring  a  standardized  evals  protocol  to  be  incorporated  into  the  computation  graph 

 of training for sufficiently large training runs 
 ●  Requiring  model  weights  to  be  encrypted  in  such  a  way  that  only  allows  them  to  be 

 used  on  (specific)  other  flexHEG-capable  devices,  optionally  according  to  specific  rules, 
 thereby  enabling  improved  security  and  effective  governance  of  even  distributed  AI 
 training & inference 

 A  perennial  problem  in  the  governance  of  technology  is  that  it  is  difficult  to  predict  what  kinds 
 of  rules  and  verification  might  eventually  be  needed  as  the  technology  develops.  The 
 programmable  nature  of  flexHEGs  would  enable  the  implementation  of  a  wide  range  of 
 agreed-upon  rules,  thereby  allowing  governance  to  adapt  to  future  developments,  and 
 extending  the  range  of  feasible  agreements.  This  flexibility  could  also  help  to  avoid  the  accruing 
 of outdated, overly blunt or ineffective regulation. 

 Mechanisms  for  flexHEGs  could  also  enable  qualitatively  improved  safety  and  security  by 
 implementing  rules  locally  on-chip  and  thus  allowing  rule  violations  to  be  prevented  from 
 occurring  in  the  first  place.  In  addition  to  reducing  the  need  to  rely  on  intrusive  monitoring  and 
 costly  after-the-fact  punishment  to  deter  violations,  local  implementation  of  rules  could  be 
 particularly  valuable  if  AI  technology  becomes  so  powerful  that  a  rule  violation  could  have 
 consequences  —  intentional  or  not  —  that  would  be  so  far-reaching  that  it  could  not  be 
 recovered from, or would undermine the ability for any actor to punish it. 

 Mechanisms  for  hardware-enabled  guarantees  should  only  be  implemented  in  a  form  that 
 would  address  concerns  about  privacy,  security,  and  risks  of  regulatory  overreach.  We  discuss 
 these issues at more length in  Appendix B  . 

 To  ensure  that  all  parties  could  trust  these  mechanisms,  the  flexHEG  design  and  guarantee 
 mechanisms  should  be  made  fully  open  source  so  that  their  integrity  can  be  validated  via 
 external  audits.  Additionally,  the  guaranteeable  chips  should  be  robust  to  tampering  even  from 
 state-level  adversaries,  to  ensure  that  even  state  actors  cannot  compromise  the  mechanisms. 
 This  would  allow  all  parties  to  establish  justified  trust  that  the  mechanism  only  does  what  it  is 
 expected  to  do,  and  that  it  cannot  be  used  as  a  “backdoor”  to  spy  or  intervene  on  chips 
 arbitrarily or without the owner’s knowledge. 

 To  ensure  privacy  and  security,  the  flexHEG  design  would  never  involve  “phoning  home” 
 without  permission  and  review  by  the  device  owner.  This  means  that  no  information  can  be 
 secretly  collected  about  the  accelerator  without  the  device  operator  being  aware.  Local 
 implementation  of  rules  (as  discussed  above)  also  greatly  reduces  the  need  for  any  information 
 to  be  reported  to  regulators  or  other  third  parties.  Nearly  the  only  information  that  would  need 
 to  go  from  a  regulator  to  the  secure  processor  would  be  firmware  updates,  which  could  be 
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 compiled  from  open  source  code  by  the  chip  owner.  The  only  exceptions  to  this  would  be  some 
 specific  information  possibly  required  to  implement  specific  guarantees,  but  this  information 
 could  also  be  controlled  and  reviewed  by  the  device  owner.  Overall,  it  should  be  feasible  to 
 operate guaranteeable chips even in an air gapped environment. 

 To  ensure  that  all  devices  implement  the  latest  rules,  it  could  be  desirable  for  the  mechanism  to 
 require  regular  updates  to  continue  operating.  However,  this  would  raise  concerns  about  users 
 being  forced  to  install  arbitrarily  restrictive  rule  sets  in  the  future.  This  is  an  important  problem, 
 but could likely be addressed in various ways, such as one or more of the following: 

 ●  The  mechanisms  could  be  configured  to  only  accept  updates  that  have  been  signed  by  a 
 quorum  of  parties.  These  parties  could  be  parties  in  an  international  process  designed  to 
 ensure  that  rules  are  only  implemented  if  they  are  genuinely  necessary  for  international 
 security. 

 ●  The  mechanisms  could  be  configured  to  irrevocably  accept  a  roll-back  to  some  minimal 
 baseline  rule  set  such  as  one  that  would  restrict  the  total  size  of  clusters,  and  nothing 
 else. We discuss how a maximum cluster size rule could be implemented in  Appendix A  . 

 The  practicality  of  flexHEG  mechanisms  depends  on  non-trivial  engineering  R&D.  A  major 
 focus  of  this  report  is  on  the  different  areas  of  technical  work  that  are  needed  to  build 
 guaranteeable  chips.  Based  on  this  analysis,  we  believe  that  guaranteeable  chips  will  be  feasible 
 to  implement,  although  at  the  time  of  this  writing  we  are  still  uncertain  about  the  level  of 
 security  and  verifiability  that  will  be  achievable  (which  will  dictate  which  contexts  they  are 
 suitable to be used in). 

 This  research  and  development  work  will  likely  take  several  years.  For  this  reason,  we  believe 
 that  development  efforts  should  begin  as  soon  as  possible.  While  current  AI  technology  is  not 
 yet  powerful  enough  to  require  strong  forms  of  international  governance,  two  years  ago  there 
 was  no  apparent  need  for  an  international  AI  Safety  Summit  or  national  AI  Safety  Institutes, 
 and  we  may  find  that  in  a  few  years’  time  the  AI  field  has  progressed  enough  to  make 
 international governance desirable. 

 In  the  meantime,  the  technological  advancements  this  research  program  would  produce  will 
 likely  be  useful  for  improving  security  and  trust  in  both  commercial  and  government 
 applications.  The  flexHEG  design  can  be  seen  as  an  improved  and  extended  form  of  confidential 
 computing,  which  has  already  been  used  by  the  computing  industry  to  improve  security  and 
 enable privacy-preserving collaboration. 

 About This Report 
 The  primary  goals  of  this  interim  report  are  to  explain  the  flexHEG  design  proposal  and  to 
 assess its overall feasibility. 

 Having  discussed  the  central  motivations  for  guaranteeable  chips  in  the  preceding  introduction  , 
 we  will  next  provide  a  high-level  conceptual  overview  of  the  full  flexHEG  design  stack  and 
 discuss  the  types  of  policy  options  this  would  enable.  We  will  then  provide  an  overview  of  the 
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 key  technical  objectives  which  a  consolidated  R&D  effort  to  develop  the  full  flexHEG 
 capabilities  would  have  to  address.  Next,  we  will  present  a  concrete  architecture  proposal  that 
 we  believe  to  be  particularly  feasible,  and  identify  directions  for  future  research  .  We  also  include 
 two  appendices:  Appendix  A  discusses  in  more  detail  what  guarantees  the  flexHEG  design 
 would enable, and  Appendix B  further discusses concerns  about privacy, misuse and security. 

 Because  flexHEG  mechanisms  allows  the  deferral  (and  later  revision)  of  what  specific  rules  or 
 policies  should  be  implemented  using  these  mechanisms,  this  report  will  not  discuss  these 
 questions  in  detail.  We  do  provide  outlines  of  some  policies  that  could  be  implemented  using 
 these mechanisms in order to illustrate the mechanisms’ capabilities. 

 Alongside  this  report,  there  is  an  ongoing  effort  to  build  and  test  a  proof-of-concept  of  the 
 proposed  architecture,  using  off-the-shelf  components,  with  a  fully  open  source  hardware  and 
 software  stack,  for  less  than  $5,000  per  unit  (with  the  majority  of  that  cost  being  the  AI 
 processor).  More  information  on  this  can  be  found  at  this  website  .  The  prototype  is  not  intended 
 to  meet  all  the  security  requirements  of  our  proposal  in  full,  but  to  provide  it  as  a  starting  point 
 for  iteration  by  other  researchers,  and  for  more  grounded  conversations  with  interest  groups  in 
 the field. 

 Conceptual Overview of the FlexHEG Design Stack 
 In  this  section,  we  will  give  an  initial  overview  of  the  full  flexHEG  design  stack.  We  will  focus 
 on  clarifying  the  key  components  and  their  respective  functions  before,  in  later  sections, 
 discussing how the different components could concretely be implemented in more detail. 

 In  the  flexHEG  design,  each  of  the  AI  accelerator  chips  (such  as  GPUs)  would  be  placed  in  a 
 tamper-proof  enclosure  along  with  an  auxiliary  secure  processor  .  All  of  the  accelerator’s  memory 
 and other components would also be contained within the enclosure. 

 The  secure  processor  would  be  an  open-source,  standardized,  general-purpose  processor  that 
 sits  between  the  accelerator  chip  and  the  rest  of  the  world,  able  to  locally  access  all  information 
 and  instructions  going  to  and  from  the  chip  as  well  as  some  aspects  of  the  accelerator’s  state.  By 
 selectively  blocking  and  encrypting  incoming  and  outgoing  information  as  needed,  the 
 processor could implement a wide range of guarantees. 

 Crucially,  the  secure  processor  would  be  able  to  encrypt  and  authenticate  data  coming  from  the 
 accelerator  chip  and  from  the  secure  processor  itself,  and  thus  enable  privacy-preserving, 
 sophisticated,  and  programmable  verification  schemes.  Encryption  would  allow  improved 
 security  through  preventing  anyone  other  than  the  intended  recipient  —  such  as  the  chip  owner, 
 a  regulator,  or  another  secure  processor  chip  in  the  system  —  from  accessing  or  modifying  the 
 data in flight. This would be similar to existing confidential computing systems  [4]  . 

 The  tamper-proof  enclosure  would  protect  both  the  main  chip  and  the  secure  processor  from 
 snooping  or  interference.  If  any  attempt  is  made  to  tamper  with  the  enclosure,  a 
 tamper-detection  system  would  be  triggered,  activating  mechanisms  that  will  wipe  any  secret 

 7 

https://secure-processor-demo.replit.app/
https://www.zotero.org/google-docs/?Y7Fqya


 information  on  both  chips  and  rendering  the  accelerator  permanently  inoperable  by,  e.g., 
 blowing a large number of microscopic fuses on the accelerator chip. 

 The  secure  processor’s  firmware  could  be  programmed  to  implement  various  rules  and 
 guarantees  regarding  the  behavior  of  the  accelerator.  To  enable  multilateral  governance,  the 
 secure  processor  would  be  configured  to  require  each  update  of  the  firmware  to  be  signed  by  a 
 quorum (k of n) of authorized parties. 

 To  ensure  that  all  chips  have  the  latest  security  updates  and  are  subject  to  up-to-date  rules, 
 secure  processors  could  be  required  to  regularly  —  e.g.,  every  three  months  —  install  a  firmware 
 update,  or  the  secure  processor  will  block  the  chip  from  operating.  This  update  interval  itself 
 should  be  programmable  so  that  it  can  be  “tightened”  or  “loosened”  depending  on  what  a 
 situation  calls  for.  To  prevent  this  from  being  used  as  a  ratchet  to  implement  arbitrarily  intrusive 
 rules,  all  chips  could  be  allowed  to  revert  to  a  permanently-approved  firmware  version 
 implementing  some  baseline  ruleset,  such  as  a  maximum  cluster  size  rule  as  described  in 
 Appendix A  . 

 The  supply  chain  for  the  enclosures  and  secure  processors  would  need  to  be  secured  and 
 monitored  to  the  satisfaction  of  all  relevant  parties  to  ensure  that  everyone  can  trust  the 
 integrity  of  the  secure  processors.  While  we  will  not  discuss  this  in  detail  in  this  report,  we 
 believe  that  sufficient  supply  chain  monitoring  could  be  feasible  through,  e.g.,  random 
 inspections and other measures. 

 Concrete Policy Options Enabled by FlexHEGs 
 This  section  will  sketch  how  the  flexHEG  design  could  be  used  to  implement  and  verify  various 
 policies.  It  is  only  a  loose  sketch,  and  is  intended  to  be  more  illustrative  than  prescriptive  or 
 precise.  Appendix A  discusses potential mechanism  implementations in more detail. 

 For any information going to and from the accelerator, the secure processor can: 
 ●  Verify the source and content of information coming in. 
 ●  Encrypt  outgoing  information  to  guarantee  that  only  the  intended  recipient  will  be  able 

 to  access  it,  and  sign  the  information  to  allow  the  intended  recipient  to  verify  its  source 
 and integrity. 

 ●  Guarantee that no information leaves the system that is not supposed to. 
 ●  Monitor  instructions  going  into  the  accelerator  and  track  its  behavior  to  ensure  that  any 

 information it processes is processed as expected. 
 ●  Produce specific, verifiable claims about the state and behavior of the accelerator. 

 This  combination  of  capabilities  could  allow  the  secure  processor  to  verify  the  properties  of 
 complex  workloads  distributed  across  several  accelerators  by  relying  on  encryption  and 
 cryptographic  signatures  to  guarantee  that  information  moving  between  the  accelerators  has 
 not  been  spied  on  or  modified  in  transit  and  by  allowing  the  secure  processors  to  make 
 verifiable claims to each other about the behavior of their respective accelerators. 
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 Verifying  training  run  size:  In  order  to  determine  the  total  amount  of  computing  capacity  that 
 has  gone  toward  training  a  particular  model,  each  secure  processor  can  keep  track  of  how  much 
 computation  has  gone  into  producing  various  intermediate  results  and  pass  that  information  on 
 to  the  next  processor  alongside  the  intermediate  result  itself.  These  “receipts”  can  then  be  traced 
 back  all  the  way  to  the  randomly  initialized  starting  point  and  summed  to  obtain  the  total 
 number  of  floating-point  operations  that  contributed  to  a  final  set  of  model  weights.  A  very 
 similar approach could be used to also account for the total amount of training data. [  more  ] 

 Verifying  other  claims  about  training  runs  and  other  workloads:  Along  similar  lines,  the 
 secure  processors  could  also  keep  track  of  more  sophisticated  facts  about  what  computations 
 have  and  have  not  been  performed  during  the  training  process,  such  as  what  kinds  of  tests  were 
 run  on  the  weights  during  training  or  whether  the  training  involved  reinforcement  learning  or 
 other  types  of  feedback.  This  approach  could  also  be  generalized  to  other  workloads  performed 
 on these accelerators, such as simulations and graphics processing. [  more  ] 

 Privacy-preserving  verification:  These  verified  claims  about  workloads  could  then  be  reported 
 to  regulators,  compute  providers,  or  other  stakeholders  as  needed.  Secure  processors  could 
 perform  trustworthy  “simplifications”  on  verified  claims,  e.g.  by  simplifying  the  claim  “this 
 model  was  trained  in  exactly  this  way”  to  “a  model  matching  this  hash  was  trained  on  a  total  of 
 X  FLOP”,  which  could  further  be  simplified  to  “a  model  matching  this  hash  was  trained  with 
 fewer  than  Y  FLOP”.  This  allows  the  reported  verified  claim  to  include  the  absolute  minimum 
 amount of information needed. [  more  ] 

 Limiting  training  run  size:  An  “interlock”  that  prevents  the  accelerator  from  executing 
 instructions  not  marked  as  permitted  by  the  secure  processor  would  also  allow  proactive 
 prevention  of  any  violations  of  agreed-upon  rules.  For  example,  secure  processors  could  refuse 
 to  permit  an  operation  combining  several  intermediate  results  from  other  processors  if  doing  so 
 would  result  in  the  total  number  of  floating-point  operations  spent  on  producing  them  to 
 exceed  some  threshold.  Certain  devices  owned  by  trusted  entities  could  be  provided  with 
 licenses that would allow them to go up to a higher limit than the default. [  more  ] 

 Requiring  evaluations:  The  rules  could  similarly  stipulate  more  complex  requirements,  such  as 
 weights  being  subjected  to  certain  types  of  evaluations  or  other  checks  at  appropriate  intervals 
 during  training.  Such  rules  could  only  apply  to  models  that  are  above  a  particular  FLOP 
 threshold. [  more  ] 

 Controlling  access  to  model  weights:  By  controlling  who  can  decrypt  the  resulting  weights,  the 
 secure  processor  could  also  guarantee  that,  e.g.,  the  model  can  only  ever  be  decrypted  and  run 
 on  a  specific  set  of  flexHEG-capable  inference  chips,  thus  making  the  model  radically  more 
 difficult  to  steal.  The  inference  chips  could  also  be  required  to  implement  certain  rules  in  order 
 to  be  allowed  to  decrypt  and  run  the  model.  This  would  allow  models  to  be  widely  distributed 
 while still allowing that they are always used with certain safeguards in place. [  more  ] 

 If  rules  are  proactively  implemented  on-chip,  this  removes  the  need  for  any  verification 
 information to be shared with regulators or other parties. 
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 Actually  implementing  these  kinds  of  complex  verification  schemes  in  a  robust  way  would  be  a 
 significant  software  engineering  challenge,  but  it  should  be  an  entirely  solvable  challenge, 
 provided  the  secure  processors  offer  a  certain  set  of  basic  affordances  combined  with  a  flexible 
 general-purpose processing capability. 

 If  real-time,  local  verification  and  automated  compliance  guarantees  as  described  above  prove 
 infeasible  for  particularly  complex  applications,  verification  could  instead  rely  on  after-the-fact 
 analysis  of  verifiable  “receipts”  and  hashes  of  intermediate  results.  Even  this  could  likely  be 
 implemented  in  a  way  that  keeps  the  details  of  the  workload  private.  See  Shavit  [5]  for  further 
 discussion of such methods. 

 Technical Objectives for FlexHEGs 
 In  the  list  below,  we  propose  a  set  of  properties  that  a  complete  flexHEG  design  must  have.  3 

 Next,  we  argue  that  a  system  with  these  properties  would  flexibly  and  securely  enable  all  of  the 
 previously  discussed  guarantees  and  policy  options.  In  the  next  section  we  describe  a  potential 
 implementation of a system that has these properties and assess its technical feasibility. 

 Desired system properties: 
 1.  General-purpose logic  can be executed on-device.  4 

 2.  Process  to  update  governance  mechanisms  if  (and  only  if)  the  update  has  been  approved 
 by pre-specified (quorum of) stakeholders. 

 3.  System  has  access  to  accelerator  data  needed  for  verification  of  compliance  with  a 
 variety of rules. 

 4.  System can control accelerator  functioning for non-destructively  enforcing regulations. 
 5.  Secure  against  non-invasive  attacks  (e.g.,  the  update  process  cannot  be  circumvented  or 

 the authorization keys cannot be stolen). 
 6.  Secure  against  physical  tampering  .  Ideally,  circumvention  by  adversaries  would  not  be 

 technically  feasible,  even  with  physical  access.  A  somewhat  easier  goal  is  to  make 
 circumvention  so  costly,  per-device,  that  it  is  not  worthwhile.  Tamper-responsive  designs 
 can be complemented by randomized inspections for even greater assurance. 

 7.  Secure  timekeeping  for  implementing  mechanisms  that  depend  on  the  date  or 
 durations. 

 8.  Protection  of  confidential  data  even  if  the  device  is  compromised.  For  some  threat 
 models,  a  high  per-device  cost  of  extraction  is  a  sufficient  mitigation;  for  others,  it  would 
 be beneficial to completely prevent data exfiltration even once. 

 9.  Authenticated  and  confidential  inter-node  communication  for  governance 
 coordination  and  protecting  model  weights  (e.g.,  encrypting  model  weights  or  enforcing 

 4  For  an  ambitious  version  of  automated  governance,  this  general-purpose  logic  might  be  a  large  AI 
 model itself. 

 3  Although  we  are  also  interested  in  designs  that  compromise  on  some  properties  if  that  allows  them  to  be 
 deployed  faster.  For  example,  H100s  could  potentially  be  modified  using  post-processing  to  be 
 tamper-evident,  with  firmware  in  existing  processors  updated  to  support  various  governance 
 mechanisms (similar to  [6]  ). 
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 a  maximum  number  of  accelerators  that  can  simultaneously  contribute  to  a  single 
 computation). 

 10.  Integrity of the system can be verified  to provide  confidence to stakeholders. 

 Additional constraints: 
 11.  GPU cooling  is not significantly hampered. 
 12.  Manufacturability at scale in the near future  (2–4 years, or ideally sooner). 
 13.  Cost  of GPUs is not significantly increased. 
 14.  Efficiency  is  not  significantly  decreased  (performance,  power  consumption,  and  board 

 space). 
 15.  Robustness  against  scalable  attacks  against  GPUs  (e.g.,  tamper  response  cannot  be 

 maliciously triggered at scale or keys used to authorize updates cannot be deleted). 
 16.  Tolerable false-positive rate  (of tamper detection). 
 17.  Tolerable disruption of the maintenance  and replacement  processes for GPUs. 
 18.  Acceptable  integration  with  existing  datacenter  infrastructure  such  as  racks,  cooling 

 systems,  and  networking,  i.e.  the  secure  enclosure  should  not  be  too  large  to  fit  in  a  rack, 
 or make it too difficult to connect the devices into a dense network fabric. 

 A  system  that  meets  constraints  11–17  could  be  integrated  with  accelerators  with  minimal 
 disruption  in  the  near  future.  If  the  system  also  has  properties  1–10,  then  it  would  be  able  to 
 measure  accelerator  usage,  coordinate  with  other  flexHEG-capable  systems,  perform  checks  on 
 these  data,  and  either  credibly  attest  compliance  or  throttle  usage  if  needed.  These  capabilities 
 would  be  sufficient  to  implement  all  of  the  potential  governance  mechanisms  discussed  in  the 
 preceding  section  and  Appendix  A.  It  would  also  be  able  to  support  future  governance 
 mechanisms  if  they  take  the  same  form  of  observing  the  usage  of  one  or  multiple  accelerators 
 and  then  optionally  performing  rule  checks.  The  system  would  also  satisfy  the  strategic  goals 
 that  it  be  able  to  update  the  governance  logic,  credibly  demonstrate  system  integrity,  and 
 protect against a range of attacks. 

 Potential FlexHEG Design 
 A  potential  flexHEG  mechanism  could  be  built  by  modifying  GPUs  to  include  a  secure 
 processor  for  executing  governance  logic  and  a  tamper-responsive  enclosure  to  prevent  physical 
 tampering  (as  shown  in  Figure  1).  Table  1  lists  the  sub-components  of  this  potential  system  and 
 why  they  are  needed  to  achieve  the  design  objectives.  Next,  we  expand  on  their  technical 
 feasibility, design choices, and work that could advance each project. 
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 Technical Component  Motivation 

 Tamper-responsive  secure enclosure  Prevent and/or detect physical tampering. 

 Self-disablement mechanism  Disable the accelerator before governance 
 mechanisms can be disabled if physical 
 tampering is detected. 

 Secure processor  Securely execute logic for implementing 
 guarantees. 

 Accelerator Interlock  (input data and output 
 controls) 

 Gather necessary information from GPU to 
 verify compliance and be able to control the 
 GPU for (non-destructive) enforcement. 

 Mechanism update process  Allow governance mechanisms to be updated 
 if the changes are authorized by required 
 parties. 

 Confidential, authenticated, and efficient 
 communication between devices 

 Enable coordination between multiple 
 flexHEG-capable devices (e.g., they can 
 efficiently send secret weights or verify the 
 authenticity of metadata). 

 Table 1: Motivation for technical components in a potential flexHEG design. 

 The  flexHEG  design  discussed  here  is  one  of  several  options  that  could  plausibly  satisfy  most  of 
 the technical objectives. Some alternative options for guaranteeable chips are: 

 ●  Modifying  the  firmware  of  existing  accelerators  to  perform  logic  for  implementing 
 guarantees,  and  potentially  also  adding  a  tamper-evident  or  tamper-responsive 
 enclosure with an additional assembly process. 

 ●  Integrating  a  secure  processor  directly  into  the  accelerator  chip  either  as  a  separate  IP 
 block  or  by  obfuscating  it  within  the  rest  of  the  accelerator  circuits.  This  option  could 
 potentially  be  protected  with  a  chip-scale  secure  enclosure  instead  of  a  larger  PCB-scale 
 enclosure. 

 ●  Building  a  bolt-on  device  that  could  be  added  to  existing  accelerators  to  monitor  power 
 usage and other high-level metrics. 

 ●  Integrating  governance  mechanisms  on  network  switches  or  controller  CPUs  to  govern 
 clusters of GPUs in a server (with a server-sized secure enclosure). 

 We focus on this specific version because: 
 1.  Including  a  flexHEG  mechanism  on  every  accelerator  is  the  simplest  way  to  ensure  that 

 each  accelerator  implements  the  guarantees  (although  there  may  be  more  efficient 
 approaches). 

 2.  A  separate  chip  for  the  secure  processor  with  unambiguous  access  to  communication 
 channels  is  likely  easier  to  audit  and  trust  than  an  integrated  secure  processor  within  the 

 12 

http://interlock/


 closed-source  accelerator  chip  (especially  for  actors  with  little  visibility  into  the  design 
 process  or  supply  chain).  Using  a  separate  chip  is  also  likely  less  disruptive  to  the 
 accelerator  design  process  and  enables  reuse  between  different  accelerators.  However,  a 
 major  potential  downside  of  having  the  secure  processor  on  a  separate  chip  is  that 
 supply  chain  interception  or  tampering  could  potentially  be  used  to  obtain  unrestricted 
 accelerator chips.  5 

 3.  A  tamper-responsive  secure  enclosure  can  be  used  in  situations  where  tamper  evidence 
 alone  would  be  insufficient  (e.g.,  if  conventional  inspections  or  enforcement  are  not 
 feasible). 

 4.  Having  access  to  extensive  communications,  memory,  and  meter  data  enables  more 
 sophisticated  governance  rules  than  are  possible  with  high-level  metrics  like  power 
 usage. 

 However,  the  best  type  of  design  for  implementing  flexHEGs  depends  on  the  setting  they  are  to 
 be  used  in.  For  some  settings,  some  of  the  more  difficult  technical  requirements  could  be  relaxed 
 (especially  if  the  flexHEG  system  has  to  be  deployed  before  there  is  time  to  design  and 
 manufacture a new accelerator generation). 

 Figure 1: Potential system design with secure processor and tamper-responsive enclosure. 

 5  Unless  the  accelerator  chip  is  cryptographically  paired  so  that  it  cannot  operate  without  a  particular 
 secure processor. 
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 Technical Components 

 This  section  focuses  on  the  analysis  of  technical  components  needed  for  a  potential  flexHEG 
 design:  secure  enclosure,  self-destruct  mechanism,  secure  processor,  accelerator  interlock, 
 mechanism  update  process  and  interconnect  encryption.  In  each  subsection,  we  summarize  the 
 purpose of the component and explore promising ways to implement it. 

 Secure Enclosure 

 Summary:  Secure  enclosures  have  been  used  for  over  20  years  to  defend  cryptographic 
 coprocessors  and  other  chips  from  physical  tampering  [7],  [8]  .  Secure  enclosures  could  similarly 
 protect  GPUs  if  they  can  be  modified  to  handle  higher  heat  transfer,  a  larger  temperature  range, 
 and GPU-specific input/output ports. 

 Design Choices 

 More  advanced  secure  enclosures  use  active  sensing  to  detect  if  the  enclosure  has  been  breached 
 and  then  to  trigger  an  appropriate  response  (in  this  case,  some  form  of  self-destruct).  One 
 approach  for  active  sensing  is  to  measure  the  capacitance  of  a  serpentine-patterned  conductor 
 embedded  around  the  enclosure  [9]  .  Similarly,  the  resistance  of  a  conductor  mesh  can  also  be 
 measured  [10]  .  If  the  mesh  is  disrupted,  then  the  measurements  will  change,  alerting  the 
 tamper-detection  system.  Measurements  of  the  radio  response  function  within  an  enclosure  6 

 could  also  be  used  [11]  (although  detection  tests  for  the  referenced  prototype  have  so  far  only 
 been done with metallic probes). 

 To  ensure  system  integrity  over  the  lifetime  of  the  device,  a  battery  inside  or  outside  of  the 
 enclosure  7  can  be  used  so  that  the  sensors  continue  to  operate  even  if  external  power  is 
 disconnected.  8 

 Additional  sensors  can  be  used  to  prevent  more  sophisticated  attacks  by  measuring  for 
 radiation,  voltage  glitching,  lasers,  temperature,  and  the  rate  of  temperature  change.  To  avoid 
 having  a  single  point  of  failure  that  could  be  targeted  by  an  attacker,  a  distributed  network  of 
 sensors could be used to independently trigger the tamper-response mechanism. 

 Larger  enclosures  that  contain  more  GPUs  are  likely  faster  to  design  and  deploy  because  they 
 do  not  need  to  be  as  tightly  integrated  with  the  specific  GPU.  9  However,  enclosing  multiple 
 GPUs  has  a  couple  potential  downsides:  1)  GPUs  frequently  fail,  and  maintenance  could  be  very 

 9  Data  center  security  is  an  extreme  extension  of  a  large  secure  enclosure,  which  could  be  very  important 
 for some governance strategies (but is out of scope here because of our focus on technology R&D). 

 8  If power from the battery is also lost, then the tamper response is triggered. 

 7  Having  the  battery  outside  the  enclosure  may  be  preferable  if  space  is  limited  or  if  the  battery  has  to  be 
 replaced. 

 6  This  enclosure  could  potentially  be  made  of  metallized  foam  to  enable  airflow  without  providing  a  path 
 for  instruments  to  enter  through  (and  the  geometry  of  the  metallized  foam  could  potentially  be  sensed  by 
 the radio so that modifications could be detected). 
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 complicated  while  maintaining  security;  2)  the  economics  are  less  favorable  because  an  attacker 
 only needs to disable one enclosure to access multiple GPUs. 

 The  FIPS-140-3  level  4  certification  process  [12]  measures  the  physical  defenses  of 
 tamper-responsive  enclosures  for  cryptographic  coprocessors.  A  modified  version  of  the 
 FIPS-140-3  certification  process  might  be  useful  for  verifying  the  security  of  completed 
 flexHEG-capable systems. 

 At  the  time  of  this  writing,  devices  that  are  certified  at  FIPS-140-3  level  4  [13]  (the  highest  FIPS 
 hardware-security  rating)  are  sold  by  IBM  [14]  and  by  Private  Machines  [15]  .  One  version  of  this 
 project  might  be  to  modify  existing  secure  enclosures  to  work  with  GPUs  or  to  demonstrate  why 
 it  would  be  feasible  to  modify  these  types  of  systems.  This  feasibility  analysis  could  be 
 performed  by  addressing  how  to  adjust  for  the  following  differences  between  the  use  case  with 
 GPUs and cryptographic coprocessors: 

 1.  GPUs have to dissipate much more heat; 
 2.  GPU interconnect connections may be more extensive or delicate; 
 3.  GPUs can reach high temperatures, which may change the tamper-sensor calibration. 

 GPUs  are  currently  either  air-cooled  or  liquid-cooled,  and  the  trend  is  moving  more  towards 
 liquid  cooling  (although  it  can  be  difficult  to  set  up).  Designs  for  secure  enclosures  will  need  to 
 accommodate  large  amounts  of  heat  transfer  that  may  be  necessary  for  future  GPUs.  This  could 
 potentially  be  done  with  a  within-enclosure  liquid  cooling  system  and  a  liquid–liquid 
 heat-exchanger  at  the  enclosure  boundary.  Alternatively,  the  secure  enclosure  could  be  made  of 
 compressed  metallized  foam  whose  particular  geometry  is  sensed  by  radio,  and  high  pressure 
 air  flow  could  be  used  for  cooling  .  As  another  option,  the  secure  enclosure  could  potentially  be 
 made  sufficiently  thermally  conductive  and  connected  directly  to  the  chip  so  that  it  can  be 
 cooled from outside the enclosure.  10 

 Tamper-evident  enclosures  aim  to  solve  a  different  version  of  this  problem,  where  the  goal  is  to 
 be  able  to  detect  afterwards  if  an  enclosure  has  been  breached.  Building  tamper-evident 
 enclosures  could  potentially  be  faster  and  simpler  than  tamper-responsive  enclosures  (they 
 probably  do  not  require  a  battery  or  self-destruct  mechanism).  However,  tamper  evidence  is 
 only  useful  in  scenarios  where  GPUs  can  be  inspected  and  where  misuse  does  not  need  to  be 
 prevented immediately. 

 Technical Feasibility 

 It  will  likely  be  possible  to  modify  secure  enclosures  to  handle  heat  requirements,  although 
 thermal  calculations  for  specific  designs  are  needed.  Based  on  the  public  literature,  it  is  very 
 difficult  to  circumvent  the  best  secure  enclosures.  However,  it  is  unclear  whether  nation-state 

 10  Although,  this  would  require  the  secure  enclosure  to  be  both  quite  thin  and  thermally  conductive.  E.g., 
 even  with  a  2  cm  thick  copper  enclosure,  the  temperature  would  reach  62°  C  to  dissipate  700W  from  a  die 
 with  an  area  of  820  mm^2.  From  https://en.wikipedia.org/wiki/Thermal_conductivity_and_resistivity  : 
 q  =  -k  (T2  -  T1)/L  ->  T1  -  T2  =  q*L/k  =  700/(820*10^-6)*0.02/401  =  42  °  C  temperature  difference.  So,  if 
 the outside temperature were 20  °  C, the die temperature  would be 62  °  C. 
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 attackers  can  compromise  the  best  secure  enclosures  and,  if  they  could,  what  the  marginal 
 per-device cost of circumvention would be. 

 Self-Disablement Mechanism 

 Summary:  A  self-disablement  mechanism  allows  the  system  to  become  inoperable  if  an  attempt 
 to  breach  the  secure  enclosure  is  detected  (and  before  the  guarantee  or  defense  logic  can  be 
 disabled), thereby reliability preventing misuse of the accelerator.  11 

 Design Choices 

 There  are  multiple  approaches  that  could  be  used  to  disable  a  GPU.  We  favor  methods  that  do 
 not  introduce  significant  novel  safety  hazards,  are  easy  to  manufacture,  and  are  difficult  for  an 
 adversary to disable. 

 One  potential  approach  is  to  integrate  thousands  or  millions  of  One-Time  Programmable  (OTP) 
 memory  bits  throughout  the  GPU  and  modify  individual  GPU  components  (e.g.,  multiplication 
 circuitry)  to  not  function  if  the  OTP  memory  has  been  set.  If  a  tampering-detection  signal  is  sent 
 (or  if  there  is  a  loss  of  power),  then  nearby  capacitors  could  provide  the  energy  to  set  the  OTP 
 bits.  If  we  could  be  confident  that  there  is  no  scalable  way  to  reset  these  OTP  bits,  this  would 
 make for a reliable self-destruct mechanism. 

 Antifuses  are  an  OTP  component  that  are  relatively  simple  to  manufacture  and  cannot  be  reset 
 by  depositing  electrons  [16]  .  Placing  them  far  from  the  surface  of  the  chip  would  afford 
 additional  security.  However,  more  thorough  research  would  be  valuable  to  compare  potential 
 OTP  components  and  ensure  that  the  one  chosen  is  not  susceptible  to  any  scalable  attacks  (e.g., 
 can antifuses be quickly repaired by an automated focused ion beam?). 

 Self-disablement  mechanisms  that  do  not  require  changing  the  accelerator  chip  design  would  be 
 preferable  because  they  could  be  added  later  in  the  design  phase.  One  way  to  do  this  is  by 
 adding  a  thermal  self-destruct  mechanism  using  a  material  like  nanothermite  [17]  in  the 
 packaging  process.  An  additional  benefit  of  thermal  self-disablement  is  that  the  chip  is 
 unambiguously  disabled,  which  also  may  make  it  more  difficult  for  adversaries  to 
 reverse-engineer  the  design.  However,  using  reactive  materials  like  nanothermite  may  make 
 manufacturing more complicated, and if improperly designed there may be safety concerns. 

 Technical Feasibility 

 A  self-destruct  mechanism  based  on  OTP  memory  would  likely  be  possible  to  manufacture, 
 although  additional  work  is  needed  to  design  the  specific  circuits.  Other  self-destruct 
 mechanisms may also work, but challenges with manufacturing would need to be addressed. 

 11  Although,  some  scenarios  may  not  require  self-destruct  if  it  is  sufficient  to  detect  misuse  via  inspections 
 for  tamper-evidence without immediately preventing it. 
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 Secure Processor 

 Summary:  The  purpose  of  the  secure  processor  is  to  execute  general-purpose  logic  for 
 implementing guarantees. 

 Design Choices 

 The requirements for the secure processor are that it: 
 ●  Be secure 

 ○  Without flaws or debugging logic that could be exploited;  12 

 ○  With  firmware  verification  and  rollback  protection  (See  Mechanism  Update 
 Process  ). 

 ●  Have the appropriate inputs to monitor GPU usage (See  Accelerator Interlock  ). 
 ●  Be performant enough to keep up with GPU usage. 
 ●  Have a real-time clock for time-dependent guarantees. 
 ●  Have  access  to  a  random  number  generator  and  side  channel-resistant  cryptography 

 hardware (See  Encrypted Interconnect  ). 

 There  are  many  existing  processor  designs  that  could  be  used  to  satisfy  at  least  a  minimal 
 version  of  these  requirements,  including  a  range  of  TPM  cryptoprocessors  [18]  .  As  an  example 
 of  a  related  (although  closed-source  and  obfuscated)  processor,  the  Intel  Management  Engine  is 
 included  on  many  Intel  CPUs  for  features  like  anti-theft  prevention  and  capability  licensing  [19]  . 
 There are also open-source alternatives  [20], [21],  [22]  . 

 Additionally,  we  want  various  parties  to  trust  that  the  logic  is  being  executed  as  expected.  To 
 achieve  this,  we  need  to  guarantee  that  no  backdoors  could  have  been  added  to  the  secure 
 processor  design  or  manufacturing  process  [23]  .  Some  options  that  could  reduce  concerns  about 
 backdoors are: 

 ●  Open-sourcing  the  secure  processor  design  and  guarantee  logic,  which  could  then  be 
 analyzed and compared with physical scans of randomly selected chips. 

 ●  Executing  some  or  all  of  the  logic  on  FPGAs,  which  can  have  their  configurations 
 publicly  audited,  might  be  easier  to  check  for  physical  inconsistencies  because  of  their 
 more  uniform  structure,  and  can  use  variants  of  configurations  with  equivalent  logic  to 
 make many hardware trojans impractical  [24]  . 

 ●  Sourcing  multiple  secure  processors  from  different  manufacturers  13  and  running  the 
 same  instructions  on  all  of  them  before  checking  their  outputs  for  consistency  on-device 
 (this  approach  is  similar  to  the  Lock-Step,  which  is  used  to  provide  fault  tolerance  in 
 functional  safety  designs  [25]  ).  With  three  secure  processors,  they  could  detect 
 disagreements and use ⅔ voting to choose which action to take. 

 13  Although  this  may  increase  the  risk  of  a  single  compromised  secure  processor  being  used  to  sabotage 
 chip usage. 

 12  Formal verification may be useful here. 
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 There  are  also  manufacturing  techniques  that  would  probably  make  tampering  even  harder 
 (e.g.,  putting  the  secure  processor  near  sensitive  components  like  tamper  sensors  or  interconnect 
 channels). 

 As  a  faster  but  less  secure  option,  a  flexHEG  mechanism  could  potentially  be  implemented  on 
 current GPUs by modifying the firmware of existing processors (similar to  [6]  ). 

 Technical Feasibility 

 A  secure  processor  could  be  built  using  an  off-the-shelf  design  for  a  secure  processor.  Additional 
 work may identify ways to make the processor more secure or trustworthy. 

 Accelerator Interlock 

 Summary:  In  order  to  verify  adherence  to  arbitrary  rules,  the  secure  processor  must  be  able  to 
 access  all  information  relevant  to  making  the  compliance  judgment.  Similarly,  the  secure 
 processor  must  be  able  to  block  GPU  usage  in  the  case  that  the  compliance  check  was 
 unsuccessful, thereby enabling non-destructive enforcement. 

 Design Choices 

 Ideally, the secure processor can access the following information: 
 ●  GPU instructions; 
 ●  Input/Output data; 
 ●  Memory snapshots; 
 ●  Usage metrics. 

 However,  if  the  GPU  IP  is  secret  and/or  too  complicated  to  check  over,  we  may  not  be  able  to 
 fully  trust  the  data  it  reports.  At  a  minimum,  information  entering  or  leaving  the  chip  could  be 
 routed  through  the  secure  processor,  and  clock  cycles  within  the  secure  processor  could  be 
 trusted. 

 It  would  also  be  useful  to  be  able  to  write  directly  to  memory,  because  some  guarantees  could 
 rely on operations like randomizing the initial training weights.  14 

 More  ambitious  guarantees  might  require  a  large  AI  model  to  be  run  locally  to  perform 
 automated  checks.  This  may  require  use  of  the  AI  accelerator  to  run  the  model,  which  could  be 
 difficult  to  do  if  the  accelerator  is  not  fully  trusted.  One  approach  to  resolve  this  might  be  for  the 
 secure  processor  to  randomly  check  some  intermediate  calculations  performed  by  the 
 accelerator. 

 14  And  it  would  be  better  to  avoid  trying  to  design  checks  to  see  if  the  data  have  been  properly 
 randomized. 
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 If  possible,  it  could  be  useful  to  redundantly  measure  important  information  and  then  perform 
 consistency  checks  so  that  tampering  with  inputs  is  non-trivial.  It  may  also  be  useful  for  security 
 to obfuscate the information collection system. 

 Technical Feasibility 

 It  would  likely  be  possible  to  route  inputs  and  outputs  through  buffers  that  the  secure  processor 
 can  access,  although  the  cost  of  doing  this  could  depend  on  GPU  architecture  details.  Further 
 work  could  identify  other  information  that  can  also  reliably  be  observed  or  controls  that  could 
 be reliably applied. 

 Mechanism Update Process 

 Summary:  For  the  guarantee  logic  to  be  flexible,  it  must  be  possible  to  update  it  on  deployed 
 devices.  However,  to  prevent  attackers  from  disabling  the  guarantees,  the  secure  processor 
 should only accept updates that were authorized by the appropriate parties. 

 Design Choices 

 This  authorized  firmware  update  process  is  typically  implemented  using  public  key 
 cryptography,  where  the  new  logic  must  be  cryptographically  signed  using  the  appropriate 
 private key(s) for it to be accepted by the device. 

 The  standard  approach  is  to  publish  cryptographically  signed  updates  and  allow  device 
 operators  to  download  and  install  them  if/when  they  choose.  A  downside  to  this  standard 
 approach  is  that  if  the  guarantees  need  to  be  modified  to  respond  to  new  threats,  device 
 operators  could  simply  not  install  the  updated  guarantees.  If  the  flexHEG  system  is  only  being 
 used  to  provide  credible  attestation  about  how  the  device  is  used,  this  would  not  be  a  problem 
 (because  the  attestation  would  communicate  which  set  of  rules  it  is  for).  However,  if  the 
 flexHEG  system  was  needed  to  guarantee  compliance  with  the  updated  rules,  voluntary 
 updates would be insufficient. 

 An  alternative  approach  that  could  be  used  to  enforce  updates  is  to  require  that  GPUs 
 periodically  receive  a  license  specifying  the  minimum  allowed  version  number.  The  secure 
 processor  could  prevent  usage  of  the  GPU  if  it  has  operated  for  too  long  (as  measured  by  a 
 secure  real-time  clock  or  cycle  counter  15  )  without  receiving  a  license,  or  if  the  minimum  version 
 number  is  greater  than  the  current  version  number.  The  licenses  and  updates  can  be  delivered 
 by  any  channel,  so  no  internet  connection  is  required  for  this  approach  (which  could  be 
 important for chips that are air-gapped for security). 

 The  length  of  time  that  a  license  is  valid  affects  the  latency  at  which  new  updates  must  be 
 loaded  (e.g.,  if  devices  need  a  new  license  every  three  months,  they  could  ignore  an  update  for 
 that  much  time).  This  pushes  in  the  direction  of  making  the  license  renewal  time  shorter  so  that 

 15  If  using  a  cycle  counter,  there  is  a  risk  that  the  operator  secretly  does  not  use  the  chip  to  save  up  usage 
 time. This risk could potentially be mitigated by requiring usage reports. 
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 guarantee  changes  are  not  overly  delayed.  However,  with  very  frequent  license  renewals,  the 
 burden  on  operators  becomes  more  significant.  One  approach  that  could  be  used  to  resolve  this 
 is  to  use  data  diodes  [26]  ,  which  could  be  used  to  transmit  licenses  without  any  risk  of  data 
 leaving via the same path. 

 The  update  process  could  require  that  the  update  (or  lack  of  update)  be  multilaterally  approved 
 by  k  of  n  parties,  so  that  no  single  actor  could  unilaterally  impose  excessive  restrictions.  The  list 
 of  which  parties  are  allowed  to  authorize  an  update  and  how  many  votes  are  needed  can  also  be 
 modified in each preceding update. 

 Technical Feasibility 

 It  would  be  possible  to  require  that  the  secure  processor  regularly  receives  either  approval  or 
 updated  firmware  signed  by  the  correct  parties  in  order  to  operate.  Additional  work  could 
 identify  better  alternatives  or  modifications  that  would  allow  the  system  to  recover  from  a  bad 
 firmware update without compromising security. 

 Encrypted Interconnect 

 Summary: 
 Encrypted  communication  channels  could  allow  secure  processors  to  coordinate  the 
 implementation  of  guarantees  across  groups  of  GPUs  operating  together.  Hardware 
 cryptographic  acceleration  could  enable  all  input  and  output  traffic  to  be  made  confidential  and 
 authenticated. 

 Design Choices 

 Cryptography  that  provides  confidentiality  could  allow  the  secure  processor  to  choose  specific 
 GPUs  that  are  allowed  to  read  the  outgoing  data.  Similarly,  cryptography  that  verifies  message 
 authenticity  could  allow  secure  processors  to  trust  that  a  particular  message  has  come  from 
 another secure processor. 

 There are several potential uses of encrypted interconnect: 
 ●  Protect weights from being exfiltrated by an attacker snooping on interconnect; 
 ●  Constrain  a  training  run  to  only  use  a  certain,  limited  number  of  GPUs  (similar  to  Fixed 

 Set  [3]  ) by only allowing specific GPUs to decrypt  the information; 
 ●  Verify  authenticity  of  metadata  describing  the  compute  graph,  which  could  enable 

 verification  that  training  data  were  approved  by  a  regulator  or  that  model  parameters 
 have not exceeded an operation limit. 

 For  low-throughput  cryptography,  a  standard  Hardware  Security  Module  integrated  with  the 
 secure  processor  would  be  sufficient.  However,  if  the  entire  output  stream  through  the 
 interconnect  needs  to  be  encrypted  (>  900GB/s  [27]  ),  substantially  more  cryptography  hardware 
 would be necessary. 
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 NVIDIA’s  H100  already  has  dedicated  AES-GCM  hardware  to  encrypt  PCIe  traffic  for 
 single-GPU  Confidential  Computing  [28]  .  For  multi-GPU  confidential  computing,  they  will 
 likely  also  need  AES-GCM  hardware  for  the  NVLink  ports  to  protect  against  an  attacker 
 snooping on the interconnect traffic. 

 Performing  AES256  encryption  without  GCM  authentication  on  all  NVLink  traffic  would 
 require  around  3%  of  the  total  computing  power  of  an  H100.  16  If  NVIDIA  does  not  add  the 
 cryptography  hardware  to  support  confidential  computing  and  the  cost  of  adding  it  to  the 
 secure  processor  would  be  prohibitive,  it  may  be  possible  to  achieve  some  coordination  between 
 secure processors using occasional randomized authentication challenges.  17 

 Technical Feasibility 

 NVIDIA’s  H100s  already  have  AES-GCM  acceleration  hardware.  The  main  open  question  is 
 whether  the  efficiency/boardspace  cost  of  encrypting  all  interconnect  communications  would 
 be  prohibitive.  If  it  were  prohibitive,  there  are  more  complicated/risky  communication 
 protocols based on randomized challenges that could be used for some of the use-cases. 

 Evaluation of Performance on Technical Objectives 

 Having  outlined  a  potential  flexHEG  design,  we  will  now  evaluate  how  well  it  satisfies  the 
 technical  objectives  for  flexHEGs.  Table  2  contains  a  brief  assessment  of  the  potential  design  for 
 each intended property or constraint. 

 Technical Objective  Evaluation of Performance 

 1. General-purpose logic 
 for guarantees 

 Standard microprocessors or FPGAs could be used to perform 
 general-purpose logic for guarantees. 

 2. Process to update 
 guarantees 

 It is possible to require regular checks for updates and only allow 
 updates that have cryptographically signed approval from k of n 
 required parties. More detailed analysis would be useful to gain 
 confidence about edge cases. 

 17  However,  a  security  model  built  around  randomized  challenges  is  likely  more  complex  and  susceptible 
 to unexpected attacks. 

 16  Order-of-magnitude  estimate  for  fraction  of  compute  needed  for  AES-256  encryption  of  interconnect  on 
 an H100: 

 -  H100 capable of 1.98 *10^15 int8 ops per second; 
 -  Interconnect  bandwidth  of  900*10^9  bytes  per  second  (source: 

 https://en.wikipedia.org/wiki/Ampere_(microarchitecture)  ); 
 -  ~  60  operations  per  byte  for  AES256  (source:  Claude  and  wikipedia 

 https://en.wikipedia.org/wiki/Advanced_Encryption_Standard  ); 
 -  Total AES256 byte operations needed per second: 900*10^9 * 60 = 5.4*10^13; 
 -  Fraction of total operations: 5.4*10^13  / (1.98 *10^15) = ~3% of GPU operations. 
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 3. System has access to 
 GPU data 

 It is likely possible to access GPU instructions and 
 communications without trusting the GPU. It is also likely 
 possible to access usage metrics and memory, although how 
 much these can be trusted is unclear. 

 4. System can control 
 GPU 

 It is possible to enforce rules by preventing external 
 communications or by throttling power access. Other methods 
 could potentially be combined to improve robustness. 

 5. Secure against 
 non-invasive attacks 

 Security against non-invasive attacks will depend on specific 
 implementation details, although red-teaming, formal 
 verification, and bug bounties can help identify flaws. 

 6. Secure from physical 
 tampering 

 It will likely be possible to modify existing secure enclosures to 
 work with GPUs. These enclosures are very complicated to 
 circumvent, but the difficulty for nation-states is currently 
 unclear. 

 7. Secure timekeeping  The secure processor will already be battery powered with 
 sensors to detect side-channel attacks, which would also protect 
 the clock. 

 8. Protect secret data  As with FIPS-140 level 4 cryptoprocessors, secret keys can be 
 stored in protected registers with battery power to ensure 
 persistence. If tampering is detected, these keys can be deleted. 

 9. Authenticated and 
 confidential 
 communication 

 Some accelerators already have AES-GCM hardware for 
 encrypting PCIe traffic. It would likely be possible to add enough 
 AES-GCM hardware to encrypt all traffic, and this may already be 
 needed to enable multi-GPU confidential compute. 

 10. Integrity of system 
 can be verified 

 This is potentially possible with FPGAs or open source secure 
 processors designed by different actors. 

 11. GPU cooling  It is likely possible to modify secure enclosures to accommodate 
 high heat transfer. More analysis is needed to choose a design 
 with minimal security drawbacks. 

 12. Manufacturable at 
 scale in near future 

 The secure processor and an OTP-based self-destruct mechanism 
 can be manufactured with standard processes. Secure enclosures 
 have been manufactured before, so it is likely possible to use 
 similar manufacturing techniques. 

 13. Cost of GPUs is not 
 significantly increased 

 The secure processor can likely be manufactured at low cost 
 (relative to the accelerator). There are no major reasons to expect a 
 high marginal cost for secure enclosures, but this will depend on 
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 the specific design. 

 14. Chip efficiency is not 
 significantly decreased 

 The most significant potential computation is the encryption of 
 interconnect traffic, which could use roughly 3% of total 
 processing power. 

 15. Does not enable 
 scalable attacks 

 Standard approaches for protecting private keys can be used to 
 ensure licenses and updates can continue to be signed. Tamper 
 sensors should be designed to be unsusceptible to scalable 
 attacks. 

 16. Tolerable 
 false-positive rate 

 This will depend on how the tamper sensors are calibrated. The 
 false-positive rate should be thoroughly tested and prioritized as 
 a design goal for the secure enclosure. 

 17. Tolerable disruption 
 to maintenance 

 With one accelerator per enclosure, faulty accelerators can be 
 swapped out in the same way they currently are. 

 18. Acceptable 
 integration with 
 infrastructure 

 If the secure enclosure geometry is designed to fit within existing 
 servers then the impact on infrastructure will be minimal. More 
 work on this is needed. 

 Table 2: Evaluation of the potential flexHEG design against the technical objectives for flexHEGs. 

 Future Work Towards FlexHEGs 
 In  the  previous  sections,  we  proposed  a  set  of  criteria  for  a  complete  flexHEG  system,  along 
 with  a  potential  design  for  such  a  system.  While  our  initial  feasibility  analysis  found  it  likely 
 that  many  of  the  objectives  could  be  achieved,  more  work  is  needed  to  clarify  specific  design 
 choices.  The  list  below  contains  research  questions  that  could  make  this  flexHEG  design  more 
 concrete and reduce technical risk. 

 i.  What  is  a  good  physical  design  for  a  secure  enclosure  that  allows  for  future  heat  transfer 
 requirements and interconnect geometry? 

 ii.  What type of OTP memory should be used, and what circuit design would be 
 appropriate for distributed OTP self-disablement? (Or alternatively, is there a 
 self-destruct mechanism that is superior to OTP disablement?) 

 iii.  Which specific processor architecture(s) should be used for the secure processor? Are 
 there good reasons not to use three redundant FPGAs, with a ⅔ voting scheme and error 
 detection? 

 iv.  Are there ways to legibly increase confidence that the flexHEG design does not allow for 
 backdoors and that other parties' flexHEG devices are functioning as intended? 

 v.  What are the potential failure modes of the proposed firmware update process and how 
 can they be mitigated? (E.g., faulty update, private key stolen or deleted, etc.) Which 
 cryptographic algorithms should be used? What are the implications of being able to 
 dynamically change which parties can vote to authorize a firmware update? 
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 vi.  What hardware would be needed for accelerated interconnect encryption, and how 
 much board space/power would it require? How much latency would this introduce? If 
 this would be excessively costly and it is not already planned for confidential compute, 
 what is the right design for a more lightweight protocol? (E.g., using randomized 
 challenges.) 

 vii.  How should the secure processor, crypto hardware, and accelerator interact? What are 
 the pros and cons of integrating all into one chip vs. retaining them as separate 
 components? How can one securely “pair” components if separate? How can one best 
 share access to crypto hardware between confidential compute and flexHEG uses? 

 viii.  How trusted should the accelerator be? If the accelerator is needed to run an AI model to 
 check guarantees, is it necessary to randomly check the accuracy of some steps by 
 recomputing them with the secure processor? How might this work? 

 ix.  How best to track multi-GPU calculations using a compute graph? How to statically 
 describe the compute graph to the secure processor (or alternatively, dynamically 
 generate the compute graph)? How to efficiently use encryption to guarantee that 
 between-accelerator communication is occurring as expected? How to take memory 
 snapshots and compactly record the compute graph history? How to efficiently combine 
 the compute graph history for snapshots without double-counting operations? 

 x.  How secure are the best current secure enclosures (e.g., FIPS-140-3 level 4)? How do we 
 legibly assess the security of future flexHEG designs once they have been built? 

 xi.  Are there reduced versions of flexHEGs that would be faster or simpler to deploy? 
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 This  section  will  provide  more  detailed  sketches  of  how  flexHEGs  could  be  used  to  implement  a 
 range  of  verification  and  automated  compliance  mechanisms.  These  are  not  intended  to  be  a 
 complete  description,  nor  are  they  a  strong  recommendation  of  this  exact  approach.  Rather,  the 
 goal is simply to illustrate what kinds of guarantees flexHEG mechanisms could enable. 

 We  will  begin  by  a  simple  maximum  cluster  size  mechanism  that  could  provide  a  simple 
 baseline,  allowing  small  clusters  to  be  exempt  from  other  types  of  rules.  We  will  then  sketch  a 
 basic  approach  to  verifying  claims  about  workloads  before  moving  on  to  describing  how 
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 workload  verification  could  be  extended  to  automated  compliance.  We  will  also  describe  how 
 flexHEG  would  allow  controls  on  how  results,  such  as  trained  models,  can  be  shared,  and  how 
 this  would  improve  security.  We  will  then  discuss  some  more  complex  schemes  that  would 
 combine these capabilities to solve AI governance challenges. 

 Maximum  Cluster  Size  as  a  Minimal  Rule  for  Small-Scale  Use 

 Cases 

 Most  of  the  verification  and  automated  compliance  mechanisms  discussed  in  this  report 
 essentially  require  all  workloads  to  be  articulated  in  a  format  that  the  secure  processor  can 
 analyze  and  verify  claims  about.  This  may  be  difficult  to  implement  and  unnecessarily 
 restrictive  in  many  cases.  As  the  primary  concerns  addressable  by  guaranteeable  chips  relate  to 
 large-scale  AI  applications,  chips  that  are  limited  to  sufficiently  small  clusters  could  be  left 
 exempt  from  any  rules  and  requirements.  This  could  also  create  a  desirable  safeguard  against 
 overreach.  We  sketch  a  mechanism  for  implementing  this,  based  on  the  “Fixed  Set”  mechanism 
 described by Kulp et al. [3]. 

 To  implement  an  effective  limit  on  maximum  cluster  size,  the  guaranteeable  chips  would,  by 
 default,  only  communicate  with  other  chips  at  a  very  low  bandwidth,  making  them  difficult  to 
 use  for  workloads  that  do  not  fit  on  a  single  accelerator.  If  a  user  did  want  to  use  the  chip  as  part 
 of  a  small  cluster,  they  would  ask  a  set  of  guaranteeable  chips  to  form  a  cluster  with  a  set  of 
 other  guaranteeable  chips.  The  guaranteeable  chips  would  all  verify  with  each  other  that  they 
 are  in  agreement  regarding  which  chips  are  part  of  their  network  and  ensure  that  the  network’s 
 total  FLOP/s  capacity  falls  under  some  particular  threshold.  Any  traffic  outside  the  network 
 would  only  be  allowed  to  occur  at  very  low  bandwidth  18  in  order  to  guarantee  that  this  cluster 
 cannot  be  usefully  combined  with  other  clusters  to  run  larger  workloads.  Exceptions  could  be 
 made  for  data  that  are  encrypted  in  such  a  way  that  they  can  only  be  decrypted  on  the  same 
 cluster.  This  would  allow,  e.g.,  fast  off-cluster  backups  without  concerns  that  the  backups  would 
 actually  be  fed  to  a  different  cluster.  The  secure  processor  might  also  be  configured  to  lift  these 
 limits  if  the  chip  is  running  a  trusted  workload  that  has  been  signed  by  a  regulator,  such  as 
 inference on a known-to-be-safe model. 

 The  maximum  allowable  size  for  these  rule-free  clusters  should  likely  be  determined  relative  to 
 a  particular  threshold  at  which  more  demanding  guarantees  would  be  required.  For  example,  if 
 models  trained  above  10  k  FLOP  would  be  considered  potentially  dangerous  and  required  to  be 
 trained  in  particular  ways,  the  maximum  allowable  size  for  rule-free  clusters  could  be  set  at 
 some  level  such  that  it  would  be  infeasible  to  attempt  a  10  k  FLOP  training  run  using  a  large 
 number  of  these  rule-free  clusters.  This  would  depend  on  making  some  modeling  assumptions 
 regarding  the  penalty  that  would  be  imposed  by  the  limited  communication  bandwidth 

 18  This  bandwidth  limit  might  be  articulated  in  terms  of  an  average  over  a  period  of  several 
 days,  allowing  data  to  be  moved  onto  and  off  the  cluster  relatively  quickly  at  the  beginning  and 
 end  of  a  workload,  while  preventing  workloads  that  would  require  sustained  high-bandwidth 
 communication. 
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 between  the  rule-free  clusters.  However,  this  threshold  should  be  set  conservatively  to  account 
 for  the  fact  that  algorithmic  innovations  would  likely  reduce  the  amount  of  compute  required  to 
 attain some particular, potentially dangerous level of capabilities  [29]  . 

 Alternatively,  the  maximum  allowable  size  for  rule-free  clusters  could  be  set  relative  to  the 
 capabilities  of  non-guaranteeable  compute  available  at  the  time.  For  example,  if  there  are 
 already  large  numbers  of  non-guaranteeable  chips  in  the  world  such  that  it  would  be  infeasible 
 to  prevent  anyone  from  building  a  10  x  FLOP/s  cluster  using  them,  there  would  be  relatively 
 little  purpose  in  setting  the  maximum  allowable  size  for  rule-free  clusters  at  any  level  below  10  x 

 FLOP/s. 

 Verifying Claims about Workloads 

 Put  in  general  terms,  various  computing  workloads  performed  on  AI  accelerators  can  be 
 thought  of  as  taking  some  data  and  processing  them  in  some  way.  Generic  data  analysis 
 typically  involves  taking  some  data,  filtering  and  transforming  them  in  some  way,  and 
 calculating  statistics  over  the  resulting  “cleaned”  data.  Training  a  machine  learning  model 
 typically  looks  like  taking  randomly  initialized  weights  and  a  dataset  and  processing  them 
 together  to  modify  the  weights  to  perform  better  on  some  task.  Running  a  simulation  will 
 involve  taking  some  starting  state  and  processing  it  according  to  some  set  of  rules  to  obtain  the 
 next state of the simulation, and so on. 

 Secure  processors  could  be  used  to  verify  various  types  of  workloads  by  producing  verifiable 
 “receipts”  of  what  data  were  processed  and  of  how,  resulting  in  a  description  of  how  some  final 
 result  (such  as  a  trained  model)  was  produced.  Secure  processors  could  aggregate  and  analyze 
 these  receipts  and  produce  higher-level  receipts  that  make  more  abstraction  claims  about  the 
 workload.  These  higher-level  receipts  could  include  only  the  minimal  amount  of  information 
 that  needs  to  be  reported,  e.g.,  that  a  particular  model  was  trained  with  a  total  amount  of  FLOP 
 that does or does not exceed some threshold. 

 For  example,  in  order  to  determine  the  total  amount  of  computing  capacity  that  has  gone 
 toward  training  a  particular  model,  each  secure  processor  can  keep  track  of  how  much 
 computation  has  gone  into  producing  various  intermediate  results,  such  as  activations, 
 gradients,  and  shards  of  weights,  and  pass  that  information  to  the  next  processor  in  a  “receipt” 
 accompanying  the  intermediate  result  itself.  These  receipts  can  then  be  traced  back  all  the  way 
 to  the  randomly  initialized  starting  point  and  summed  to  obtain  the  total  number  of 
 floating-point operations that contributed to a final set of model weights. 

 Receipts  could  also  be  combined  to  make  claims  about  what  has  not  been  done  by  combining 
 receipts  describing  what  has  been  done.  For  example,  someone  who  operates  a  large  number  of 
 AI  accelerators  for  the  purposes  of  running  simulations  unrelated  to  AI  could  aggregate  receipts 
 describing  all  of  their  simulation  workloads  from  a  particular  month  to  produce  a  receipt  stating 
 “this  set  of  chips  was  not  used  for  AI  workloads  during  this  particular  month.”  If  some 
 accelerators were simply idle or offline, the secure processor would be able to verify this as well. 
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 This  description  is  simplified  and  overlooks  some  open  problems,  such  as  how  to  ensure  that 
 additional  compute  is  not  implicitly  smuggled  in,  e.g.,  through  inputs  that  are  supposedly 
 training  data.  However,  these  appear  to  be  likely  solvable,  e.g.,  by  requiring  developers  to  keep 
 verifiable  records  of  which  data  they  trained  on  so  that  the  data  can  be  inspected  (again,  ideally 
 in a privacy-preserving manner) to check for foul play. 

 Automated Compliance with Rules 

 If  the  secure  processors  are  continuously  tracking  and  generating  “receipts”  throughout  the 
 workload,  this  could  also  be  used  to  automatically  guarantee  compliance  with  constraints  on 
 workloads. 

 For  example,  a  rule  limiting  AI  training  workloads  to  a  maximum  compute  threshold  could  be 
 enforced  by  having  the  secure  processor  block  any  operation  that  would  result  in  a  training  run 
 exceeding  this  threshold,  e.g.  as  a  result  of  the  operation  merging  or  further  processing  previous 
 intermediate results. 

 Alternatively  (or  complementarily),  the  secure  processors  could  perform  static  checks  on  a 
 description  of  the  workload  before  it  begins  to  make  sure  it  complies  with  all  rules,  and  then 
 monitor  the  behavior  of  the  involved  accelerators  to  check  that  the  actual  computation  matches 
 the plan. 

 This  kind  of  automated  compliance  could  be  preferable  to  verification  because  it  would  remove 
 the  need  for  the  chip  owner  to  communicate  anything  at  all  to  the  regulator  and  would  prevent 
 anyone  from  breaking  rules  even  if  they  are  indifferent  to  later  punishment.  Making  fully 
 automated  compliance  reliable  would  likely  be  a  greater  software  engineering  challenge.  One 
 advantage  of  a  verification-focused  approach  is  that  the  chip  operator  can  play  a  part  in  figuring 
 out  how  they  can  structure  their  workload  such  that  they  can  produce  the  required  verification 
 of  compliance,  whereas  a  ruleset-based  approach  would  require  a  regulator  to  write  a  fully 
 general  compliance  system  that  could  analyze  any  future  workload  and  determine  whether  it  is 
 in violation. 

 Controlling the Sharing and Deployment of Results 

 Restrictions  on  how  the  results  of  some  computations  can  be  shared  could  also  be  implemented 
 using  flexHEG  mechanisms.  For  example,  if  an  AI  model  has  been  trained  with  an  amount  of 
 compute  exceeding  some  threshold,  the  secure  processor  could  refuse  to  allow  the  weights  to  be 
 moved  off  the  chip  unless  they  are  encrypted  such  that  they  can  only  be  decrypted  by  other 
 guaranteeable chips. 

 In  some  cases,  the  weights  might  be  decryptable  by  any  other  flexHEG-equipped  chip.  In  this 
 case,  the  purpose  of  this  restriction  would  be  to  guarantee  that  the  weights  cannot  be  further 
 modified  without  approval  and  that  the  deployment  of  the  model  is  compliant  with  any 
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 deployment-related  rules  that  all  flexHEG  chips  implement.  This  would  allow  models  to  be 
 released  to  be  used  freely  by  anyone,  while  still  guaranteeing  that  any  safeguards  integrated 
 into the model remain in place. 

 More  commonly,  a  company  might  encrypt  a  model  such  that  only  specific  chips  owned  by  their 
 partners  or  customers  can  run  the  model.  This  would  allow  a  model  to  be  widely  deployed, 
 while making it much more difficult for anyone to steal the weights. 

 More Complex Rules and Verified Claims 

 Required Evaluations 

 This  section  has  so  far  focused  primarily  on  claims  about  the  quantity  of  compute  used,  but  this 
 is  of  course  not  the  only  model  property  of  interest  for  governance.  Training  compute  is  merely 
 a proxy for the overall capabilities of the model. 

 Potentially,  a  flexHEG  could  be  used  to  require  that,  when  a  given  compute  threshold  is 
 reached,  the  model  must  be  subject  to  a  particular  automated  capabilities  evaluation  before 
 training  can  continue  or  before  the  model  can  be  deployed.  An  adaptive  set  of  follow-up  actions 
 could  be  required  depending  on  the  result  of  the  evaluation.  For  example,  if  the  model  does  not 
 appear  to  have  any  dangerous  capabilities,  further  training  or  deployment  could  commence  as 
 normal.  If  the  evaluation  suggests  that  the  model  does  have  dangerous  capabilities,  it  could  be 
 required  to  be  subjected  to  further  evaluations  or  safety  and  security  measures  before  further 
 training or deployment. 

 To  govern  deployment,  flexHEG-capable  inference  chips  would  require  a  receipt  confirming 
 that  any  deployed  models  above  some  size  or  compute  threshold  have  passed  certain 
 evaluations, or the chip will refuse to run the model. 

 Mutually Private Evaluations 

 Following  the  open  source  approach  of  the  flexHEG  design,  the  automated  evaluations 
 discussed  in  the  preceding  section  would  of  course  be  open  source  and  inspectable  by  the 
 developer.  However,  in  some  cases  it  may  be  desirable  to  keep  an  evaluation  suite  hidden  from 
 the  AI  developer,  e.g.  to  prevent  “teaching  to  the  test”,  or  to  protect  proprietary  IP  of  the 
 evaluation  provider.  FlexHEG  mechanisms  could  allow  evaluations  to  be  run  while  keeping  the 
 evaluation  suite  secret  from  the  model  developer,  and  keeping  the  model  weights  secret  from 
 the  evaluation  developer.  A  secure  processor  could  be  set  up  to  run  a  program  that  applies  some 
 evaluation  to  a  model  by  running  some  function  that  takes  the  model  as  input,  and  provides  e.g. 
 a  binary  pass/fail  result.  The  evaluation  developer  would  provide  the  function,  encrypted  such 
 that  only  the  secure  processor  can  decrypt  it.  The  model  developer  would  provide  the  model 
 weights  and  architecture,  similarly  encrypted.  Both  sides  could  verify  in  advance  that  the  secure 
 processor’s  program  will  only  run  the  evaluation  function,  and  will  only  release  the  result  of  the 
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 evaluation,  and  will  never  release  either  the  model  weights  or  the  evaluation  function  outside 
 the device. 

 Required Sharing of Claims or Results 

 Controls  on  the  sharing  and  deployment  of  models,  as  described  above,  could  also  be  used  to 
 guarantee  that  developers  will  share  certain  information  with  other  parties.  The  secure 
 processors  could  prevent  a  set  of  weights  from  being  moved  off  a  cluster,  deployed,  or 
 (optionally)  trained  further  until  they  have  received  cryptographically  signed  confirmation  from 
 some  other  party  that  certain  information  has  been  received.  For  example,  developers  could  be 
 required  to  share  certain  evaluation  results  with  regulators  before  being  able  to  further  train  or 
 deploy  a  model.  This  kind  of  mechanism  could  potentially  also  be  used  to  guarantee  that  after  a 
 model  has  finished  training,  the  weights  will  be  shared  with  other  stakeholders,  such  as  other 
 state parties to some treaty, or simply investors. 

 Limitations of These Mechanisms 

 This  approach  relies  on  certain  assumptions  about  AI  systems,  such  as  that  the  most  powerful 
 and  governance-worthy  systems  are  most  compute  intensive.  These  mechanisms  also  rely  on 
 even  more  specific  assumptions,  such  that  any  single  AI  system  will  depend  on  high-bandwidth 
 communication  between  its  components.  There  will  likely  be  some  kinds  of  AI  systems  that 
 violate  these  assumptions,  and  more  will  be  discovered  as  various  actors  attempt  to  game  the 
 mechanisms. 

 Mixture  of  Experts  (MoE)  systems  are  one  example  of  existing  systems  that  violate  some  of  our 
 assumptions  and  could  be  used  to  partly  circumvent  these  mechanisms.  An  MoE  system 
 essentially  consists  of  several  different  neural  networks  that  are  each  trained  to  handle  a 
 particular  subset  of  possible  inputs  well.  Any  input  that  the  system  receives  is  then  “routed”  to 
 one  or  more  of  these  experts.  Because  there  is  no  significant  amount  of  communication  between 
 the  experts,  guaranteeable  chips  would  have  no  straightforward  way  of  knowing  that  a  neural 
 network  they  are  running  or  training  is  not  in  fact  the  entire  system,  but  merely  one  of  the 
 experts  in  a  larger  system.  This  would  allow  limits  on  system  size  to  be  partly  circumvented. 
 However,  making  the  individual  experts  smaller  will  harm  the  performance  of  an  MoE  system 
 and,  intuitively,  should  limit  the  maximum  level  of  intelligence  the  system  can  exhibit.  This 
 means  that  system  size  limits  could  still  be  effective  if  they  are  adjusted  to  appropriately 
 account for circumvention strategies such as Mixtures of Experts. 

 Further  research  is  needed  to  identify  and  assess  different  circumvention  strategies  like  this.  The 
 updateable  nature  of  the  flexHEG  design  fortunately  means  that  rules  can  be  updated  to 
 account for newly discovered circumvention strategies. 

 This  limitation  of  the  flexHEG  design  may  generally  push  AI  developers  toward  more  modular 
 systems,  consisting  of  several  networks  with  more  limited  communication  between  them.  This 
 may  actually  prove  to  be  desirable  for  reducing  risks  from  AI:  Modular  models  would  likely  be 
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 easier  for  humans  to  interpret,  reason  about,  and  control,  and  could  make  it  easier  to  ensure  that 
 the models have desirable safety characteristics. 

 If  necessary,  FlexHEGs  could  also  be  combined  with  other  forms  of  oversight  to  potentially 
 address  some  issues  like  this.  For  example,  to  address  worries  about  MoE  systems,  developers 
 could  be  required  to  report  basic  metadata  about  their  training  runs  to  regulators.  The  regulator 
 could  then  review  these  to  look  for  signs  of  efforts  to  circumvent  rules,  such  as  large  numbers  of 
 similar  training  runs  being  run  at  the  same  time.  Requiring  developers  to  report  what  each 
 model is intended to be used for would also make it more difficult to hide these systems. 

 Appendix  B:  Concerns  about  Privacy,  Misuse,  and 

 Security 
 To  enable  international  coordination  based  on  strong  mutual  assurances,  it  might  be  desirable 
 that,  eventually,  all  powerful  AI  accelerators  will  be  equipped  with  flexHEG  mechanisms.  This 
 prospect  will,  very  understandably,  raise  concerns  in  the  minds  of  many  readers.  In  this  section, 
 we  hope  to  discuss  how  our  proposal  avoids  many  concerns  and  how  some  remaining  concerns 
 might  be  mitigated.  We  first  discuss  concerns  about  the  use  of  flexHEG  for  government 
 surveillance  and  control  before  moving  on  to  concerns  about  the  secure  processor  creating 
 vulnerabilities for attackers to exploit. 

 Government Surveillance and Control 

 First,  we  want  to  emphasize  that,  in  order  to  achieve  the  described  benefits  for  international 
 coordination  and  assurance,  these  mechanisms  would  need  to  be  added  to  powerful  AI 
 accelerators  used  in  datacenters,  not  on  anyone’s  personal  devices.  Therefore,  they  would  have 
 limited usefulness for control of, e.g., ordinary political activities. 

 Additionally,  these  mechanisms  would  not  allow  governments  to  unilaterally  spy  on  anyone’s 
 chips  or  to  intervene  in  their  operation  on  an  arbitrary,  ad  hoc  basis.  Nonetheless,  verification 
 and  automated  compliance  capabilities  could  still,  in  principle,  be  used  to  implement  more 
 efficient  and  effective  mass  surveillance  and  control.  Note,  however,  that  this  would  not  be 
 qualitatively  different  from  what  a  motivated  government  could  achieve  with  less  technically 
 sophisticated  means.  For  example,  governments  could  relatively  easily  adopt  a  policy  of  only 
 allowing  powerful  AI  chips  to  be  purchased  by  licensed  cloud  providers  and  requiring  these 
 cloud providers to surveil and control what their customers do with the chips. 

 Several measures could be taken to address concerns about overreach. 
 ●  Governments  could  ideally  clear  legal,  and  perhaps  even  constitutional,  limits  on  the 

 nature  of  the  rules  implemented  through  flexHEGs  to  ensure  they  do  not  encroach  on 
 civil liberties or otherwise exert excessive control. 

 ●  The  mechanisms  could  be  governed  by  an  international  process  that  is  designed  to 
 ensure  that  these  mechanisms  are  only  used  to  implement  rules  that  are  necessary  for 
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 international  security.  The  devices  would  refuse  updates  that  have  not  been  signed  by  a 
 quorum of parties to this process. 

 ●  Instead  of  requiring  all  devices  to  be  up  to  date,  moving  to  new  rule  sets  could  perhaps 
 be  incentivized  by  having  other  flexHEG  devices  refuse  to  work  with  devices  that  are 
 out-of-date  relative  to  themselves,  including  e.g.  refusing  to  send  some  frontier  models 
 to  such  chips  for  inference.  However,  it  is  unclear  whether  this  would  create  sufficient 
 incentives to keep the system effective. 

 ●  The  mechanisms  could  be  configured  to  irrevocably  accept  a  roll-back  to  some  minimal 
 baseline  rule  set  such  as  one  that  would  restrict  the  total  size  of  clusters,  and  nothing 
 else. We discuss how a maximum cluster size rule could be implemented in  Appendix A  . 

 Indeed,  if  AI  development  comes  to  be  seen  as  a  matter  with  significant  implications  for 
 international  security,  comparable  to  e.g.  nuclear  technology,  various  countries  would  likely 
 attempt  to  monitor  and  control  it  in  various  ways.  By  allowing  rules  to  be  implemented  locally 
 and  automatically,  flexHEGs  would  likely  represent  an  option  that  would  preserve  privacy, 
 freedom,  and  the  rule  of  law  more  effectively  than  more  ad  hoc,  lower  tech  alternatives,  such  as 
 monitoring,  extensive  reporting  requirements,  physical  inspections,  and  tight  restrictions  on 
 who is allowed to buy or access powerful chips. 

 Third Party Abuse 

 Adding  an  additional  processor  to  a  system  will  inevitably  add  complexity  and  thus  create 
 some  additional  attack  surface.  The  secure  processor  may  appear  particularly  concerning  from 
 this perspective because it has, by design, extensive access to the accelerator. 

 To  address  this,  the  secure  processor  should  be  designed  extremely  carefully,  and  the  firmware 
 loaded  to  it  would  need  to  be  extremely  thoroughly  tested  and  verified.  It  should  likely  be 
 based  on  a  maximally  simple,  well-vetted  processor  design.  The  standardized,  open-source 
 nature  of  the  system  would  also  allow  anyone  to  study  the  system  to  help  find  possible 
 vulnerabilities,  improving  security.  The  required  firmware  update  mechanism  would  enable 
 issues to be addressed if any vulnerabilities were later found. 

 Importantly,  the  secure  processor  would  not  rely  on  “phoning  home”  to  anyone  and  would  only 
 need  to  receive  and  send  very  specific  information  outside  the  system.  This  means  that 
 guaranteeable  chips  could  realistically  be  kept  in  an  air-gapped  environment,  with  only 
 occasional  firmware  updates  and  possible  license  keys  needing  to  be  brought  in  to  the  outside, 
 and some signed claims being moved out of the system, if needed. 

 The addition of the secure processor also has several benefits for security: 
 ●  The  enclosure  would  protect  against  many  side-channel  and  fault-injection  attacks  that 

 AI accelerator chips are currently vulnerable to. 
 ●  The  encryption  capabilities  of  the  secure  processor  would  allow  any  significant  traffic 

 between  devices  to  be  encrypted  in  flight.  For  example,  the  secure  processor  could  be 
 configured  to  never  release  key  intellectual  property,  such  as  frontier  model  weights, 
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 outside  the  system  unless  encrypted  in  such  a  form  that  it  can  only  be  decrypted  by 
 other  secure  processors  that  will  implement  the  same  policy.  This  could  significantly 
 mitigate, e.g., insider threats. 

 ●  Because  it  sits  directly  between  the  accelerator  and  the  outside  world,  the  secure 
 processor  could  also  act  as  a  barrier  and  could  be  used  to  implement  safeguards  such  as 
 the  automatic  detection  of  suspicious  instructions  that  may  be  attempting  to  attack  the 
 accelerator. 
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